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This paper is concerned with a new theoretical approach to model grounded ice
sheets in three dimensions. These are considered as polythermal, i.e. there will be
regions with temperatures below the pressure melting point (‘cold ice’) and regions
with temperatures exactly at the pressure melting point (‘temperate ice’). In the
latter, small quantities of water may occur.

Based on previous approaches, an improved theory of polythermal ice sheets is de-
veloped, which is founded on continuum-thermodynamic balance relations and jump
conditions for mass, momentum and energy. The rheological behaviour is assumed
to be that of an incompressible, nonlinear viscous and heat conducting fluid; because
of the dependence of viscosity on temperature and on water content, the problem
is thermo-mechanically coupled. After presenting analytic solutions for a simple ge-
ometry (ice sheet of uniform depth), the theory is subjected to a scaling procedure
with the assumptions of a small aspect ratio (ratio between typical vertical dimen-
sion and typical horizontal dimension) and a small Froude number. This leads to the
introduction of the polythermal shallow-ice approximation (SIA) equations.

Finally, as an application of the model to a real problem, a numerically computed
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922 R. Greve

steady-state solution for the Greenland Ice Sheet under present climate conditions
is presented and compared with the real ice sheet.

1. Introduction

The Earth’s cryosphere consists of several components. Ice sheets are extended ice
masses with a base resting on solid land; they have formed by accumulated snowfall in
the course of the millennia. Ice stored in the present ice sheets (essentially Antarctica
and Greenland) represents by far the biggest part of today’s ice volume on Earth; this
paper is concerned with a new theoretical formulation of ice sheet motions. Alpine
glaciers develop in the same way; however, they cover alpine regions of much less
extent, typically valleys, and therefore their contribution to the cryosphere is small.
Ice shelves are floating ice masses that are fed from the seaward mass flux of an ice
sheet; they exist typically in large bays of an ice-covered continental shield. Sea ice is
superficially frozen sea water, and soil ice is frozen water in the ground as it occurs
in permafrost regions.

Ice appearing in glaciers and ice sheets exists in two fundamentally different states
(when additional tracers of salt and sediment are neglected). Cold ice is characterized
by a temperature below the pressure melting point and can be described as an
incompressible, viscous and heat-conducting one-component fluid; the large ice sheets
on Earth consist mainly of this type of ice. However, the temperature of temperate ice
is exactly equal to the pressure melting point, so that it may contain small quantities
of water in addition. Therefore, as opposed to cold ice, it must be regarded as a two-
component fluid. In ice sheets, regions of temperate ice may exist in thin, near-basal
layers, with significant consequences on the flow behaviour. Glaciers and ice sheets
that are made up by cold as well as temperate regions are referred to as polythermal
(see Paterson 1994).

In the past, several models for the numerical simulation of ice sheets have been
developed, becoming possible only due to the high calculation performance of modern
computers. The first, a still vertically integrated model, is due to Mahaffy (1976), and
has been applied to the Barnes Ice Cap in the Canadian Arctic. The first genuinely
three-dimensional model due to Jenssen (1977) has been used to model the Greenland
Ice Sheet, yet with a very low spatial resolution because of the limited computer
capacities at that time. Numerous models of increasing sophistication followed, with
applications to different problems such as the Greenland Ice Sheet, the Antarctic Ice
Sheet, the glacial Laurentide Ice Sheet, the hypothetic glacial Tibetian Ice Sheet and
so forth (Budd & Smith 1982; Oerlemans 1982; Herterich 1988; Fastook & Chapman
1989; Letréguilly et al. 1991a, b; Abe-Ouchi 1993; Calov 1994; Huybrechts 1994; Fabré
et al. 1995; Calov & Hutter 1996). Especially remarkable are the simulations of the
Antarctic Ice Sheet carried out with the Huybrechts model (Huybrechts & Oerlemans
1988; Huybrechts 1992, 1993), in which the coupled ice sheet/ice shelf/lithosphere
problem is modelled with high spatial resolution.

All these models neglect the possible influence of temperate ice regions. The tem-
perature field is calculated in the entire ice sheet by solving the heat equation for
cold ice, then temperatures that exceed the pressure melting point are retrospec-
tively reset to the pressure melting point (this is subsequently referred to as ‘cold-ice
method’). However, this is an oversimplified approach, because it does not account
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Shallow polythermal ice sheets 923

Figure 1. Sketch of a polythermal ice sheet, heavily exaggerated in the vertical. Definition of
the Cartesian coordinate system used in this study: x and y span the horizontal plane, z is the
vertical coordinate.

for the fact that the responses of cold and temperate ice regions are different, and
those regions are two different phases, separated by a phase transition surface (the
cold-temperate transition surface or ‘CTS’) for which jump conditions for the phys-
ical quantities mass, momentum and energy must be fulfilled (Hutter 1983; Müller
1985). Moreover, the cold-ice method does not determine the water content in tem-
perate ice that has a very pronounced influence on the ice viscosity (Lliboutry &
Duval 1985).

In this study we present a new continuum-mechanical formulation for polythermal
ice sheets. It is in large parts similar to previous formulations (Fowler & Larson 1978;
Hutter 1982, 1993; Blatter 1991); however, it contains some crucial new features:

(i) consideration of the contribution of the diffusive water flux to the total heat
flux in temperate ice;

(ii) a new formulation of the boundary conditions for a temperate ice base, where
especially the different behaviour of temperate ice with and without water diffusion
is incorporated;

(iii) a new formulation of the transition conditions at the cold-temperate-transition
surface (CTS), with the inclusion of water surface production at the CTS;

(iv) three-dimensional derivation of the shallow-ice approximation (SIA) for poly-
thermal ice.

Furthermore, we discuss two different types of solutions, namely (i) a semi-analytic
solution for a simple geometry (ice sheet of uniform depth), and (ii) a numerically
computed steady-state solution for the Greenland Ice Sheet under present climate
conditions.

2. The polythermal ice-sheet model

A polythermal ice sheet consists of cold-ice regions as well as temperate-ice regions;
in the latter, besides the ice, water may also be present. Below the ice sheet is
the lithosphere, which is represented as a solid rock layer of approximately 100 km
thickness that floats on the viscous asthenosphere. However, only the uppermost few
kilometres of the lithosphere influence the thermal response of the ice sheet. The
typical geometry is sketched in figure 1, where also a Cartesian coordinate system
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(x, y, z) is introduced; x and y span the horizontal plane, z is vertical and anti-parallel
to the direction of the gravity acceleration.

The following field equations, boundary and transition conditions extend the pre-
vious formulations of Fowler & Larson (1978), Hutter (1982), Blatter (1991) and
Hutter (1993).

(a ) Field equations
(i) Cold regions

Cold ice is ice with a temperature below the pressure melting point. If additional
tracers of salt, sediment, debris or air are neglected, it can be regarded as a vis-
cous, heat-conducting, incompressible one-component fluid. Thus, the mass balance
is given by

divv = trD = 0, (2.1)
where v is the ice particle velocity, and D is the strain-rate tensor. Because of the
incompressibility assumption, the stress tensor T must be split into an isotropic
pressure tensor and a deviatoric (frictional) stress tensor,

T = −p1 + TR, (2.2)

where the pressure p is a free field, whereas the stress deviator TR is described by a
constitutive relation. The momentum balance is then

− grad p+ divTR + ρg = ρv̇, (2.3)

where g is the constant gravity acceleration, and a superposed dot denotes a material
time derivative. The scaling analysis conducted below will show that the acceleration
term ρv̇ is negligible, so that pure Stokes flow prevails.

Three constitutive relations are required: a stress–strain-rate relation, a relation
for the internal energy ε and one for the heat flux q (equal to the sensible heat flux
qs);

D = EA(T ′)f(σ)TR with σ :=
√

1
2 tr(TR)2, (2.4)

ε̇ = c(T ) Ṫ , (2.5)

q = qs = −κ(T ) gradT, (2.6)
with in general temperature dependent specific heat c and heat conductivity κ. The
first equation implies that the ice fluidity factorizes into a function A(T ′) (‘rate
factor’) of the homologous temperature T ′ and a function f(σ) (‘creep response
function’) of the effective shear stress σ (square root of the second invariant of the
stress deviator IITR = 1

2 tr(TR)2 (cf. Hutter 1983)); the homologous temperature is
defined as T ′ = T−TM , where TM is the pressure melting point of ice. The rate factor
and the creep response function are not specified at this stage; the additional factor E
(‘enhancement factor’) can be set greater than unity to account, for instance, for the
increased softness of glacial dust-containing ice compared with ordinary interglacial
ice (Paterson 1994). The second equation relates internal energy changes to that of
temperature, and the last equation is Fourier’s law for heat conduction.

Neglecting heat supply due to radiation, the energy balance takes the form

ρε̇ = −div q + tr(TRD). (2.7)

Introduction of the three constitutive relations (2.4)–(2.6) transforms this into an
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evolution equation for the temperature field,

ρcṪ = div (κ gradT ) + 2EA(T ′)f(σ)σ2. (2.8)

This equation balances local temperature changes with advection (implicitly included
in the material time derivative), heat conduction and dissipative strain heating.

(ii) Temperate regions
As opposed to cold ice, the temperature of temperate ice is exactly at the pressure

melting point, so that it need not be calculated separately, but follows immediately
from the pressure field:

T = TM = T0 − β∗p = T0 − βp/ρg, (2.9)

where T0 = 0 ◦C, β∗ is the Clausius–Clapeyron constant (Paterson 1994), and the
Clausius–Clapeyron gradient β := ρgβ∗ corresponds to the temperature gradient
in temperate ice as shown below. Temperate ice may contain a certain amount of
water; as the main thermodynamic quantity the water content (more precisely: mass
fraction ω) takes the role of temperature in cold ice. Therefore, in contrast to cold
ice, temperate ice must be regarded as a binary mixture of ice and water, and ρ
denotes the total mixture density. Because of this, it is necessary to apply some
basic concepts of mixture theory (cf. Müller 1985). Owing to the general assumption
that the water content in temperate zones of polythermal ice sheets is small, with
maximum values of about 5% (Hutter 1993), temperate ice will be described by
two mass balances (one for the mixture as a whole, one for the component water),
but only one momentum and one energy balance for the mixture. That is, water
is considered as a tracer component whose motion relative to the barycentre of the
mixture is described by Fickian diffusion. Alternative concepts not necessary in the
present study, but more appropriate for polythermal alpine glaciers with sometimes
very high water content, include two separate momentum balances with a Darcy-type
interaction force between the two components (Fowler 1984; Hutter 1993; Morland
1993).

Before the field equations for temperate ice can be formulated, some quantities
from mixture theory must be introduced. The barycentric velocity is defined as

v :=
1
ρ

(ρivi + ρwvw). (2.10)

The indices i and w, respectively, refer to the components ice and water; ρi/w then
denote the corresponding partial densities. The water content is introduced as the
mass fraction, ω, of water in the mixture, namely,

ω := ρw/ρ. (2.11)

In addition, a diffusive water mass flux j is defined, that describes the water motion
relative to the motion of the barycentre,

j := ρw(vw − v) = ρω(vw − v). (2.12)

As was the case for cold ice, the mixture is also assumed incompressible, i.e. ρ is
constant. This is problematic in so far as the intrinsic densities of ice and water are
distinctly different (according to Paterson (1994) the density of glacier ice varies in
the range of 830–910 kg m−3, whereas the density of water is 1000 kg m−3). However,
because of the assumption of approximately 5% maximum water content, the relative
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changes of mixture density due to changes of the water content do not exceed 1%
and are therefore negligible. As a consequence, the mixture mass balance and the
mixture momentum balance have the same form as for cold ice, namely

divv = 0, (2.13)

− grad p+ divTR + ρg = ρv̇, (2.14)
where the stress tensor T has again been decomposed as T = −p1 + TR.

When formulating the mass balance for the component water, it must be noted that
the partial density of water ρw is not constant, but depends on the water content
itself. Furthermore, the mass of water is not conserved due to the possibility of
melting and freezing processes. It is therefore necessary to include a production term
M , the rate of water mass produced per unit mixture volume, then

∂ρw

∂t
+ div (ρwvw) = M, (2.15)

which is equivalent to
ρω̇ = −div j +M. (2.16)

As was the case for cold ice, constitutive relations are required to close the system.
These are (see Hutter 1993)

D = EAt(ω)ft(σ)TR, (2.17)

ε̇ = Lω̇ + c(T ) ṪM , (2.18)
j = −ν gradω, (2.19)
qs = −κ(T ) gradTM . (2.20)

The first equation, namely the stress–strain-rate relation, is the counterpart of (2.4)
for cold ice; however, the temperature dependence of the rate factor is replaced by a
factor depending on the water content (function At(ω)). The second equation relates
changes of the internal energy to changes of the water content and of the melting
temperature†. The third equation is the Fickian diffusion law already mentioned
above, and the last equation is again Fourier’s law for heat conduction; however,
here the total heat flux is not equal to the sensible heat flux (see below). The latent
heat L and water diffusivity ν are assumed to have constant values.

Next, consider the mixture energy balance. In (2.18) the internal energy ε depends
on the water content ω, so that a non-vanishing diffusive water flux j contributes to
a flux of internal energy (latent heat flux ql = Lj). Therefore, the total heat flux q
can be expressed as

q = qs + ql = qs + Lj. (2.21)
The inclusion of the additional term Lj is a new feature of the theoretical formula-
tion presented here. With this modified form of the energy flux, the mixture energy
balance becomes

ρε̇ = −div (qs + Lj) + tr(TRD). (2.22)
Introducing the constitutive relations (2.17)–(2.20) into the water mass balance
(2.16) and into the mixture energy balance (2.22) yields the respective relations

ρω̇ = ν∇2ω +M, (2.23)

† From a strict thermodynamical point of view this relation is merely approximate (Svendsen, personal
communication).
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and
ρLω̇ + ρcṪM = Lν∇2ω + div (κ gradTM ) + 2EAt(ω)ft(σ)σ2, (2.24)

which are consistent, provided that the water production rate M is given by

M =
1
L

(2EAt(ω)ft(σ)σ2 + div (κ gradTM )− ρcṪM ). (2.25)

This has the physical interpretation that the energy available for melting is composed
of three terms: (i) the heat dissipated by stress power, tr(TRD) = 2EAt(ω)ft(σ)σ2,
(ii) the heat conducted to the point under consideration and (iii) the heat stored
by changes in the melting temperature (the latter term being obviously negative for
ṪM > 0). Of course, the latter two effects contribute little to the value of LM , but
this is exactly what is expected in an environment with two coexisting, exchanging
phases. In earlier theories in which the latent heat flux Lj was not included in q, there
is an additional contribution −ν∇2ω to M , a heat source due to the water flux. This
ambiguity arises because separate momentum and energy balances for water and ice
are not considered. Strictly mixture-theoretical computation of q shows, however,
that the latent heat flux Lj, which arises from water diffusion, contributes indeed to
the mixture heat flux q, as is typical for fluxes in mixtures (Müller 1985; Svendsen,
personal communication), so that our approach seems to be preferable. Moreover,
if the latent heat flux were ignored, the additional term −ν∇2ω in M would cancel
water diffusion in the water mass balance (2.23) and therefore in the final water-
content equation (4.137), although diffusion was originally included in the model, a
physically very questionable result.

(iii) Lithosphere
Since the objective of this work is ice sheet modelling, in the solid rock (lithosphere)

only those processes are included that are of some relevance for the ice sheet. These
are (i) the heat conduction in the lithosphere and the resulting thermal inertia effect
on the ice sheet, and (ii) the isostatic adjustment as a consequence of the varying ice
load.

Analogous to the procedure for cold ice, the temperature equation in the rock
becomes (see (2.8))

ρrcrṪ = κr∇2T. (2.26)
The index (·)r refers to the lithosphere (= rock bed), so ρr, cr and κr are its density,
specific heat and heat conductivity, respectively. In contrast to cold ice, cr and κr
are assumed constant, and strain heating is neglected.

For the sinking depth ∆b(x, y, t) of the lithosphere into the asthenosphere below
it, consider a local force balance between buoyancy and ice load for a vertical column
of transect area dA with ice thickness H = h− b:

ρag∆b dA = ρgH dA, (2.27)

where ρa is the density of the asthenosphere. In this affirmation vertically moving
lithosphere columns do not interact with each other, and have no horizontal veloc-
ity. With the relaxed ice-free steady-state lithosphere position at z = b0(x, y, t), its
general steady-state position, bss, is given by

bss = b0 −∆b = b0 − (ρ/ρa)H. (2.28)

Due to the asthenosphere viscosity, this equilibrium is not reached instantaneously,

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


928 R. Greve

Figure 2. Geometry of the free surface.

but with a certain time lag τV . The evolution equation for the position of the litho-
sphere surface at z = b(x, y, t) is (Herterich 1990)

db
dt
≡ ∂b

∂t
= − 1

τV
(b− bss) = − 1

τV

[
b−

(
b0 − ρ

ρa
H

)]
. (2.29)

For a fixed ice thickness H this corresponds to an exponential approach of b towards
the equilibrium state bss.

Under the additional assumption that each vertical column of the lithosphere is
rigid, the velocity field in the lithosphere is

v =
∂b

∂t
(x, y, t) ez, (2.30)

where ez is the unit vector pointing in the z direction.

(b ) Boundary and transition conditions
(i) Boundary conditions at the free surface

As for any singular surface, at the free surface of the ice sheet (ice–atmosphere
interface) a kinematic condition can be formulated. If the free surface is given im-
plicitly by the equation Fs(x, t) = 0 (figure 2), with positive side adjacent to the
atmosphere, the normal unit vector n = gradFs/‖ gradFs‖ points into the atmo-
sphere. Therefore, the time derivative of Fs following the motion of the free surface
with velocity w must vanish,

dwFs

dt
=
∂Fs

∂t
+w · gradFs = 0. (2.31)

Then, introducing the ice volume flux through the free surface, a⊥s := (w − v−) · n,

∂Fs

∂t
+ v− · gradFs = −‖ gradFs‖ · a⊥s . (2.32)

With the Cartesian representation of the free surface z = h(x, y, t), Fs(x, t) := z −
h(x, y, t), and thus

∂h

∂t
+ v−x

∂h

∂x
+ v−y

∂h

∂y
− v−z =

(
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2)1/2

a⊥s . (2.33)

The ice volume flux through the free surface, a⊥s (‘accumulation-ablation function’),
is a climatic input quantity, composed of surface snowfall rate Ss (accumulation)
minus surface melting rate Ms (ablation).

From the general momentum jump relation (Müller 1985) there follows, apart from
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Figure 3. Geometry of the ice base.

the extremely small convective momentum flux through the free surface, the conti-
nuity of the traction Tn. Neglecting the stresses on the atmosphere side, composed
of the atmospheric pressure patm and the wind shear stress τwind, which are small
compared to the stresses in the ice sheet,

T−n = T+n = −patmn+ τwind = 0. (2.34)

Further, in the case of a cold free surface (the usual situation) the surface temperature
will be prescribed,

T−(x, t) = Ts(x, t); (2.35)
so, Ts represents a further climatic input quantity. In reality, the firn temperature at
10 m depth, where seasonal temperature variations (that are irrelevant for the time
scales on which ice sheet dynamics takes place) are damped to a maximum of 1%
of their surface amplitudes, is interpreted as Ts. At a temperate free surface patch,
which can possibly arise in small regions close to the ice-sheet margin, the water
content ω or, alternatively, its normal derivative must be prescribed instead.

(ii) Transition conditions at the cold ice base
Because of the different properties of cold and temperate ice, the transition con-

ditions between ice and bedrock (lithosphere) must distinguish the two cases of (i)
an ice base below pressure melting (cold ice base) and (ii) an ice base at pressure
melting (temperate ice base). Consider first the case of a cold ice base.

The bedrock below the ice sheet will be assumed to be impermeable, i.e. a possible
mass exchange between cold ice and lithosphere is ignored. The ice sheet base is
denoted by z = b(x, y, t) (figure 3); the positive side is identified with the lithosphere,
the negative side with the ice. By setting Fb(x, t) := b(x, y, t) − z, the normal unit
vector n = gradFb/‖ gradFb‖ then points into the lithosphere. These definitions
hold for both a cold and a temperate ice base.

Because of the assumed impermeability,

(v+ −w) · n = (v− −w) · n = 0, (2.36)

so that the general mass jump relation (Müller 1985) is identically satisfied. The
kinematic condition (see equation (2.32) for the free surface) is therefore

∂Fb

∂t
+ v− · gradFb = 0, (2.37)

or
∂b

∂t
+ v−x

∂b

∂x
+ v−y

∂b

∂y
− v−z = 0. (2.38)
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Further, a sliding law that relates the basal sliding velocity vsl := v−‖ − v+
‖ (where

v±‖ = v± − (v± · n)n) to the basal shear stress t−‖ is introduced:

vsl = −C(t−⊥, . . .) t
−
‖ , (2.39)

with t−⊥ = n · T−n and t−‖ = T−n− t−⊥n. The sliding function C depends on the
normal basal traction t−⊥ and possibly on further scalar quantities such as ‖t−‖ ‖ or
T . Usually in the case of a cold ice base C = 0, i.e. adhesion of the basal ice at the
bedrock, is assumed in ice-sheet and glacier models.

With the impermeability relation (2.36), the general momentum jump relation
implies

[[Tn]] = 0, (2.40)
i.e. continuity of the stress vector.

In addition, the energy jump relation is required. With (2.36) and (2.40), the
general form (Müller 1985) reduces to

κ (gradT− · n)− κr (gradT+ · n) = [[v]] · T−n = −vsl · T−n. (2.41)

The term on the right-hand side represents the basal frictional heating, which van-
ishes in the case of basal adhesion. Finally, the temperature is assumed continuous,

[[T ]] = 0. (2.42)

(iii) Transition conditions at the temperate ice base
Next consider a temperate ice base, where the temperature at the ice–lithosphere

interface is at pressure melting. However, the presence of a temperate ice base at some
place in the ice sheet does not necessarily entail the occurrence of a temperate ice
layer of non-vanishing thickness above it. It is equally possible that the temperature
gradient at the ice base is below the Clausius–Clapeyron gradient, so that the ice
becomes cold immediately above the base, even though the base itself is temperate.
The relations derived in this section hold for the case of a basal temperate ice layer
as well as for the case of a pure temperate ice base overlain by cold ice.

The description of the geometry of the cold ice base also applies here. However,
the impermeability assumption applied at the cold ice base does not follow since the
possibility of water drainage into the bedrock is not excluded.

The mass jump relation for the component water is

[[ρw(vw −w) · n]] = Pw
b , (2.43)

where a surface production rate of water Pw
b has been introduced in order to describe

the basal ice melting due to the geothermal heat flux and the basal frictional heating
caused by sliding. This can be transformed to

ρω−(v−w −w) · n = ṁw
b − Pw

b ; (2.44)

here the water mass flux into the base, ṁw
b := ρ+

w(v+
w − w) · n, has been defined,

representing a boundary condition that must be prescribed in general.
Analogous, the mass jump relation for the component ice yields

[[ρi(vi −w) · n]] = −Pw
b . (2.45)

Since the lithosphere is impermeable to ice, and therefore does not contain any ice
(ρ+

i = 0),
ρ(1− ω−) (v−i −w) · n = Pw

b . (2.46)
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With the definition (2.10) of the barycentric velocity, it follows that

v −w = ω(vw −w) + (1− ω)(vi −w),

which upon scalar multiplication by n and use of (2.44) and (2.46) becomes

(v− −w) · n = ṁw
b /ρ. (2.47)

In the case of a negligible diffusive water flux j (i.e. vw = vi = v), the water mass
flux into the base ṁw

b can be calculated by comparing (2.46) and (2.47),

ṁw
b =

Pw
b

1− ω− , (2.48)

and therefore, in contrast to the general case, does not need separate prescription.
By applying (2.47), the kinematic condition (compare with equations (2.32) and

(2.33) for the free surface) becomes

∂Fb

∂t
+ v− · gradFb = ‖ gradFb‖ · ṁ

w
b

ρ
, (2.49)

or
∂b

∂t
+ v−x

∂b

∂x
+ v−y

∂b

∂y
− v−z =

(
1 +

(
∂b

∂x

)2

+
(
∂b

∂y

)2)1/2
ṁw

b

ρ
. (2.50)

For the diffusive water flux j, from (2.44) and (2.47),

j− · n = ρω−(v−w −w) · n− ω−{ρ(v− −w) · n}
= ṁw

b − Pw
b − ω−ṁw

b

= (1− ω−)ṁw
b − Pw

b . (2.51)

Together with the diffusion law (2.19), (2.51) represents a mixed boundary condition
for the basal water content.

As for the case of a cold ice base, a sliding law

vsl = −Ct(t−⊥, . . .) t
−
‖ (2.52)

is formulated, with vsl := v−‖ − v+
‖ , t−⊥ = n · T−n and t−‖ = T−n − t−⊥n as above.

Since the water in temperate ice may act as a lubricating film between ice and rock,
the sliding function Ct is expected to be distinctly larger than its cold-ice counterpart
C.

Neglecting the small convective momentum flux resulting from (2.47), the momen-
tum jump relation yields again the continuity of the traction,

[[Tn]] = 0. (2.53)

Ignoring the contribution from the kinetic energy, the energy jump relation for the
mixture takes the form

[[qs · n]] + L [[j · n]]− [[v · Tn]] + [[(ρ(v −w) · n)Lω]] = 0, (2.54)

and with the relation (2.51) this can be simplified to

κ (gradT− · n)− κr (gradT+ · n) + vsl · T−n+ [[ρLω(vw −w) · n]] = 0, (2.55)

or, in view of (2.43),

Pw
b =

1
L

(κr (gradT+ · n)− κ (gradT− · n)− vsl · T−n). (2.56)
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Figure 4. Geometry of the lithosphere base.

This result is clear; it says that the water production rate at the temperate base, Pw
b

(‘basal melting rate’), is fed by the heat fluxes flowing toward the interface from the
ice and from the lithosphere as well as by the basal heat production due to sliding.
The temperature is continuous,

[[T ]] = 0 ⇒ T+ = T− = TM , (2.57)

with the phase change surface at the melting temperature. In contrast to the cold ice
base, the temperature TM at the temperate ice base is known (provided the pressure
field is known), achieving a thermal decoupling between the ice domain and the
lithosphere domain underneath.

(iv) Boundary conditions at the lithosphere base
The base of the modelled lithosphere is situated at z = br(x, y, t), or implicitly

Fr(x, t) := br(x, y, t) − z = 0 as above. The positive side is identified with the
asthenosphere and the negative side with the lithosphere, and the normal unit vector
n = gradFr/‖ gradFr‖ therefore points into the asthenosphere (figure 4).

Within the framework of the simple lithosphere model applied here, it is merely re-
quired to prescribe a thermal boundary condition at the lithosphere base. To achieve
this, specify the geothermal heat flux Q⊥geoth := −q− ·n in the lithosphere, then with
a Fourier heat conduction law

κr (gradT− · n) = Q⊥geoth, (2.58)

which is a Neumann condition for the temperature.

(v) Transition conditions at the CTS
The CTS (‘cold-temperate transition surface’) constitutes the phase-change sur-

face between the cold and temperate regions of an ice sheet and is therefore, like the
free surface and the ice base, a singular surface at which the physical quantities may
suffer jumps. Its geometry is sketched in figure 5. It will be described explicitly by
z = zm(x, y, t), and thus implicitly by Fm(x, t) := z − zm(x, y, t) = 0; the positive
side is the upper (cold ice) side, the negative side the lower (temperate ice) side, so
that the normal unit vector n = gradFm/‖ gradFm‖ points into the cold ice.

First, the kinematic condition,

∂Fm
∂t

+ v · gradFm = −‖ gradFm‖ · a⊥m, (2.59)

with the above choice for Fm, becomes

∂zm
∂t

+ vx
∂zm
∂x

+ vy
∂zm
∂y
− vz =

(
1 +

(
∂zm
∂x

)2

+
(
∂zm
∂y

)2)1/2

a⊥m. (2.60)
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Figure 5. Geometry of the CTS.

In this equation the ice volume flux through the CTS, a⊥m := (w − v) · n, has been
introduced. This sign choice causes a⊥m to be positive for melting conditions (ice flow
direction from the cold into the temperate region) and negative for freezing conditions
(ice flow direction from the temperate into the cold region). Because of the continuity
of v across the CTS to be deduced below it is not necessary to distinguish between
v+ and v−. In contrast to the accumulation-ablation function a⊥s on the free surface,
a⊥m arises in the interior of the ice sheet, and in consequence must be computed by
the model.

The temperature and the tangential velocity are assumed continuous,

[[T ]] = 0, [[v − (v · n)n]] = 0. (2.61)

When deriving the mass balance for temperate ice it was noted that the density
difference between cold and temperate ice is at most 1%. If this slight difference is
ignored, the mass jump relation yields continuity for the normal velocity at the CTS
as well,

[[v · n]] = 0, (2.62)
so that the entire velocity vector is continuous,

[[v]] = 0. (2.63)

From this and from the momentum jump relation follows the continuity of traction,

[[Tn]] = 0. (2.64)

Now consider the mass jump relation for the component water. Since melting and
freezing processes may occur at the CTS, a surface production term Pw

m for the
component water must be introduced. Then

[[ρw(vw −w) · n]] = Pw
m, (2.65)

or, equivalently, with the diffusive water flux given by (2.12) (in view of the fact that
at the positive (cold) side of the CTS no water is present, so that the quantities ω+

and j+ vanish)
− j− · n+ ρa⊥mω

− = Pw
m. (2.66)

This relation can be interpreted in terms of a total water flux jtot relative to the
CTS velocity w, defined by

jtot := ρw(vw −w), (2.67)

when (2.66) becomes
− j−tot · n = Pw

m. (2.68)
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That is, the normal component of the total water flux relative to the CTS at the
temperate side of the CTS equals the surface production of water.

To formulate the energy jump relation, as in the derivation of (2.22), the extended
energy flux (2.21) for temperate ice is used, so that at the cold (positive) side q = qs,
and at the negative (temperate) side q = qs + Lj. With (2.18), (2.63) and (2.64),

q+
s · n− q−s · n− Lj− · n = Lω−ρ(v −w) · n = −Lω−ρa⊥m, (2.69)

or, with Fourier’s heat conduction law and the definition of jtot,

κ (gradT+ − gradT−M ) · n+ L j−tot · n = 0. (2.70)

At the cold side of the CTS the homologous temperature T ′ = T − TM cannot
increase with the cold zone (otherwise the temperature would exceed the melting
temperature); thus

gradT+ · n− gradT−M · n 6 0. (2.71)
This and (2.70) imply j−tot · n > 0, so that

Pw
m (= −j−tot · n) 6 0; (2.72)

that is, the surface production of water Pw
m cannot be positive.

Because of this secondary condition, for each point of the CTS three cases must
be distinguished, depending on the sign of the quantity (w − v−w ) · n:

(i) (w− v−w ) ·n > 0 (‘melting condition’): With the above definition of jtot (2.67)
and ρw = ρω, (2.72) can only be fulfilled if

ω− = 0; (2.73)

so the equality in (2.72) holds. Inserting this into (2.70) yields further

gradT+ · n = gradT−M · n, (2.74)

which means that in case of melting conditions both the water content and the normal
temperature derivative are continuous at the CTS (ω+ is equal to zero anyway,
because at the cold side of the CTS by definition no water is present).

(ii) (w − v−w ) ·n < 0 (‘freezing condition’): In this case, (2.72) is compatible with

ω− > 0, (2.75)

so that (2.71) can hold in its general form

gradT+ · n 6 gradT−M · n. (2.76)

As a consequence, in case of freezing conditions the water content and the normal
temperature derivative can be discontinuous at the CTS; the jumps of these quanti-
ties are connected by equation (2.70).

(iii) (w − v−w ) · n = 0 (‘parallel-flow condition’): For this case, too, (2.72) is
compatible with

ω− > 0, (2.77)
however, equality holds automatically in (2.72). Inserting this into (2.70) provides

gradT+ · n = gradT−M · n. (2.78)

Hence, the parallel-flow condition is characterized by a continuous normal temper-
ature derivative (as for melting conditions), but the possibility of a jump in water
content (as for freezing conditions).
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Figure 6. Ice sheet of uniform depth (‘slab’): geometry and coordinate system. C.I., cold ice;
T.I., temperate ice.

This behaviour can be understood as follows: when a non-vanishing total water flux
j−tot reaches the CTS from the temperate side (freezing condition), the transported
water can freeze at the CTS (negative surface production of water). The latent heat
released can be conducted away by a negative normal temperature derivative in the
cold zone exceeding the small negative gradient in the temperate zone. Therefore,
this entails a jump of the normal temperature derivative and (since at the cold side
the water content is zero) of the water content as well.

However, the opposite situation cannot occur: it is impossible that cold ice flows
toward the CTS, melts partly at the CTS (positive surface production of water) and
produces a non-vanishing total water flux at the temperate side. The reason for this
is that the melting heat necessary for this process cannot be transported to the CTS;
to achieve this the normal temperature derivative would have to be more positive
at the cold side than at the temperate side, which is impossible because then the
temperature in the cold zone would exceed the melting temperature of ice. Ice flow
from the cold region through the CTS toward the temperate region is only possible
without surface melting when passing the CTS, so that in this case ω− = 0 and
gradT+ · n = gradT−M · n hold; in other words the water content and the normal
temperature derivative are continuous.

It should further be mentioned that in the case of a negligible diffusive water flux
j in temperate ice, that is, a very small water diffusivity ν, the distinction between
melting conditions, freezing conditions and parallel-flow conditions can simply be
made by the sign of the ice volume flux through the CTS a⊥m, because in this case
v = vw holds. a⊥m > 0 (ice flow from cold to temperate ice) then corresponds to
the melting condition, a⊥m < 0 (ice flow from temperate to cold ice) to the freezing
condition and a⊥m = 0 to the parallel-flow condition.

3. Ice sheet of uniform depth

(a ) Application of the model
A simple application of the polythermal ice sheet model described above is now

presented. Consider a two-dimensional inclined polythermal ice sheet of uniform
depth (‘slab’), infinitely extended in the x-direction, so the ice flows down the slope,
as depicted in figure 6. Numerical solutions for such a geometry have already been
constructed by Hutter et al. (1988) and Blatter (1991), but here a different approach
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provides essentially analytical solutions. As an explicit demonstration of the well-
posed nature of the boundary value problem this is an essential mathematical step.

The following assumptions are made:
1. Constant inclination angle γ, uniformity of the processes in x-direction:

(∂/∂x)(·) = 0.
2. Steady-state configuration: (∂/∂t)(·) = 0.
3. Glen’s flow law (cf. Glen 1955; Nye 1957; Hooke 1981; Paterson 1994): f(σ) =

ft(σ) = σn−1 (with n = 3).
4. Ice fluidity independent of temperature and water content: EA(T ′) = EAt(ω) ≡

A = 5.3× 10−24 s−1 Pa−3 (value for T ′ = 0 ◦C and E = 1 (see Paterson 1994)).
5. ρ = 910 kg m−3, κ = 2.1 W m−1 K−1, c = 2009 J kg−1 K−1, L = 335 kJ kg−1,

g = 9.81 m s−2.
6. Neglect of acceleration: v̇ = 0.
7. Neglect of the pressure dependence of the melting point of ice: TM ≡ 0 ◦C.
8. Neglect of water diffusion: ν = 0 ⇒ j = 0.
9. Neglect of lithospheric influences: no bedrock sinking, no calculation of litho-

sphere temperature and basal melting rate.
With these assumptions, the model equations become:
Mass balance, cold and temperate region (from equations (2.1), (2.13)):

dvz
dz

= 0. (3.1)

Momentum balance, cold and temperate region (from equation (2.3), (2.14)):

dσxz
dz

+ ρg sin γ = 0, −dp
dz

+
dσRz
dz
− ρg cos γ = 0. (3.2)

Energy balance, cold region (from equation (2.8)):

ρcvz
dT
dz

= κ
d2T

dz2 + 2Aσ4. (3.3)

Energy balance, temperate region; mass balance for the component water (from
equations (2.23), (2.24)):

ρvz
dω
dz

= 2
A

L
σ4. (3.4)

Stress–strain-rate relation, cold and temperate region (from equations (2.4), (2.17)):

σRx = 0, σRz = 0,
dvx
dz

= 2Aσ2σxz; (3.5)

with the definition of the effective shear stress σ :=
√

[tr(TR)2/2] this yields σ = σxz.
Boundary conditions, cold free surface (from equations (2.33), (2.34), (2.35)):

vz = −a⊥s , σ = σxz = 0,
T = Ts, −p+ σRz = −p = 0.

}
(3.6)

Boundary conditions, temperate base: Due to equations (3.1) and (3.6), the velocity
vz perpendicular to the bed equals the negative accumulation-ablation function a⊥s
for any vertical position in the slab. In particular, vz takes this value at the base as
well, and as a consequence, the kinematic condition (2.50) is redundant. It determines
the water mass flux into the base ṁw

b required to sustain this basal vz, but this does
not affect the ice flow.
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Figure 7. (a) Velocity vx parallel to the bed, (b) temperature T and water content ω, for the
slab with melting conditions at the CTS. H = 200 m, γ = 4◦, Ts = −3 ◦C, a⊥s = 0.2 m a−1,
vx,b = 5 m a−1.

Boundary condition (2.51), which determines the normal diffusive water flux, is
also redundant, since water diffusion is neglected. Thus, the sliding law (2.52) remains
as the boundary condition for the basal velocity parallel to the bed, vx,b. However,
for simplicity, prescribe vx,b directly instead of formulating an explicit sliding law.
The only impact of vx,b on the results is that it adds a constant to the velocity profile
vx(z); temperature and water content are not affected at all.

Transition conditions, CTS (from equations (2.61), (2.63), (2.64), (2.69), (2.71)):

T+ = T−,

v+
x = v−x , v+

z = v−z ,

p+ = p−, σ+
(xz) = σ−(xz),

κ
dT+

dz
= Lω−ρa⊥m with

dT+

dz
6 0.


(3.7)

The secondary condition in the last equation entails that two different cases must be
distinguished (see discussion in §2 b (v)):

1. a⊥m > 0 (‘melting condition’, ice flow from cold to temperate region): dT+/dz =
0, ω− = 0.

2. a⊥m < 0 (‘freezing condition’, ice flow from temperate to cold region): equation
(3.7) in its non-trivial form, i.e. dT+/dz can be strictly negative and ω− strictly
positive; in this case an additional boundary condition for the basal water content
is required.
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Figure 8. (a) Velocity vx parallel to the bed, (b) temperature T and water content ω, for the
slab with freezing conditions at the CTS. H = 200 m, γ = 4◦, Ts = −10 ◦C, a⊥s = −0.2 m a−1,
vx,b = 5 m a−1.

The case of parallel flow is ignored, because it does not allow a steady-state so-
lution. For this situation, because of (B 5) (see Appendix B) vz ≡ 0 would hold,
and thus the left-hand side of (3.4) would be zero, whereas its right-hand side would
be strictly positive owing to (B 3). This contradiction proves therefore that steady
parallel-flow conditions of this sort cannot occur.

(b ) Results
In Appendix B it is demonstrated how the slab equations compiled above can

be solved semi-analytically. Here this solution is discussed for two cases, namely (i)
melting conditions, and (ii) freezing conditions at the CTS. In detail, the parameters
are: for case (i) thickness H = 200 m, inclination angle γ = 4◦, surface temperature
Ts = −3 ◦C, accumulation-ablation function a⊥s = 0.2 m a−1 (i.e. a⊥m = 0.2 m a−1

and vz ≡ −0.2 m a−1), basal sliding velocity vx,b = 5 m a−1 (see figure 7); and for
case (ii) H = 200 m, γ = 4◦, Ts = −10 ◦C, a⊥s = −0.2 m a−1 (i.e. a⊥m = −0.2 m a−1

and vz ≡ 0.2 m a−1), vx,b = 5 m a−1 (see figure 8).
In the corresponding figures panel (a) shows the velocity vx parallel to the bed,

panel (b) the temperature T in the cold region and the water content ω in the tem-
perate region, all as functions of the vertical coordinate z. The distribution of the
velocity vx is identical for both cases; it increases monotonically from its minimum
value at the base, as it is typical for such a shear flow problem. However, the be-
haviour of the temperature and the water content are entirely different: In the case
of melting conditions (figure 7) the temperature gradient dT+/dz at the cold side of
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the CTS and the water content at the temperate side vanish, as already explained in
the discussion of equation (3.7). Since these quantities are zero on the corresponding
opposite sides of the CTS anyway, they are continuous and therefore do not jump.
On the other hand, in the case of freezing conditions (figure 8) a strictly negative
temperature gradient dT+/dz and a strictly positive water content ω− appear, so
that indeed there are discontinuities of these quantities.

Finally, to anticipate a possible objection that this solution would not represent a
realistic flow situation in a glacier or an ice sheet, note its real value in the following
senses. First, the solution demonstrates that the model equations are well posed.
Second, the solution is analytic (except for the determination of the CTS position by
a Newtonian root finder), therefore exact, and can be used to check the performance
of any numerical solution procedure.

4. Scaling analysis and shallow-ice approximation

The polythermal ice sheet model derived in §2 is in general still too complicated to
be amenable to a numerical or analytical solution; only simple problems with strong
symmetry (e.g. the ice sheet of uniform depth, see §3) can be analysed. Further
simplification is therefore required. First, introduce an appropriate scaling in which
the physical quantities are made dimensionless by the choice of corresponding typical
magnitudes. Second, systematically neglect terms of small magnitude relative to the
major balances. In this problem, the approximations are based on the assumption
that a typical height scale in an ice sheet is much smaller than a typical length scale,
and that respective gradients reflect this distinction in length scales. That is, the
ice sheets are shallow (‘shallow-ice approximation’, in the following abbreviated by
‘SIA’; cf. Hutter 1983; Morland 1984; Blatter 1991).

(a ) Introduction of the scaling
The various physical quantities will be scaled as follows:

(x, y) = [L] (x̃, ỹ), (A(T ′), At(ω)) = [A] (Ã(θ̃′), Ãt(ω̃)),

z = [H] z̃, (f(σ), ft(σ)) = [f ] (f̃(σ̃), f̃t(σ̃)),

(vx, vy) = [VL] (ṽx, ṽy), Q⊥geoth = [Q⊥geoth] Q̃⊥geoth,

vz = [VH ] ṽz, κ(T ) = [κ] κ̃(θ̃),

t = ([L]/[VL]) t̃, κr = [κr] κ̃r,

(T, T ′) = [∆T ] (θ̃, θ̃′), c(T ) = [c] c̃(θ̃),

ω = [ω] ω̃, cr = [cr] c̃r,

p = ρg[H] p̃, C(t⊥, . . .) = [C] C̃(t̃⊥, . . .),

(σxz, σyz, σ) = ερg[H] (σ̃xz, σ̃yz, σ̃), Ct(t⊥, . . .) = [Ct] C̃t(t̃⊥, . . .),

(σRx , σ
R
y , σ

R
z ) = ε2ρg[H] (σ̃Rx , σ̃

R
y , σ̃

R
z ), Pw

b = ρ[ω][VH ] P̃w
b ,

σxy = ε2ρg[H] σ̃xy, ṁw
b = ρ[ω][VH ] ˜̇m

w
b ,

(h, zm, b, br) = [H] (h̃, z̃m, b̃, b̃r), Pw
m = ρ[ω][VH ] P̃w

m,

(a⊥s , a
⊥
m) = [VH ] (ã⊥s , ã

⊥
m),


(4.1)
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with the aspect ratio ε := [H]/[L] = [VH ]/[VL] (thus [VH ] is not independent), and
T, T ′ taken in ◦C. Quantities in square brackets denote typical values for the respec-
tive variables, and variables marked with a tilde are dimensionless. Subsequently,
unless stated otherwise, only dimensionless variables are used, and the tildes are
omitted for simplicity.

The scalings are chosen such that the dimensionless quantities are all of order unity.
This is evident for the pressure p which reaches the overburden pressure magnitude
ρg[H] at the base. The deviatoric stress scaling is chosen to satisfy the horizontal
momentum balances when the dominant shear stresses are σxz and σyz, which arises
when basal friction is the dominant resistance to gravity-induced flow. This is appro-
priate to a grounded ice sheet as considered here, but not for a floating shelf where
the basal shear traction supported by the water is negligible.

The 13 basic quantities introduced above are [L], [H], [VL], [∆T ], [ω], [Q⊥geoth], [κ],
[κr], [c], [cr], [C], [Ct] and the product [A][f ] (neither [A] nor [f ] appears otherwise),
recalling that [VH ] is not independent. Together with the eight physical constants,
ρ, g, L, β, ν, ρr, ρa, τV , these form a set of 21 quantities, whose dimensions consist
of the basic units, metre, kilogram, second and kelvin. The corresponding dimension
matrix has rank four:

[L] ρ [VL] [∆T ] . . .

m 1 −3 1 0 . . .

kg 0 1 0 0 . . .

s 0 0 −1 0 . . .

K 0 0 0 1 . . .

Due to the rules of dimensional analysis (Barenblatt 1987), 13 + 8− 4 = 17 indepen-
dent dimensionless products exist. A complete set of these products is

ε =
[H]
[L]

=
[VH ]
[VL]

, Dt =
ν

ρ[H][VH ]
, Nr =

[H][Qgeoth]
[κr][∆T ]

,

Fr =
[VL]2

g[L]
, F =

ρg[H]2[C]
[L][VL]

, [ω],

D =
[κ]

ρ[c][H][VH ]
, Ft =

ρg[H]2[Ct]
[L][VL]

,
[κr]
[κ]

,

α =
g[H]

[c][∆T ]
, B =

β[H]
[∆T ]

,
ρr

ρ
,

K =
ρg[H]3[A][f ]

[L][VL]
, Dr =

[κr]
ρr[cr][H][VH ]

,
ρa

ρ
;

αt =
g[H]
L[ω]

, Tr =
τV [VH ]

[H]
,



(4.2)

ε is the aspect ratio, Fr the Froude number, D the heat diffusion number, α the
ratio of potential energy to internal energy for cold ice, K the fluidity number, αt the
ratio of potential energy to internal energy for temperate ice, Dt the water diffusion
number, F and Ft the sliding numbers for cold and temperate base, respectively,
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B the Clausius–Clapeyron number, Dr the heat diffusion number of the lithosphere,
Tr the time-lag number for isostatic bed adjustment, and finally Nr the geothermal
heat number in the lithosphere. For the last four combinations no special names are
introduced.

(b ) Scaling analysis and SIA for the model equations
In the following all field equations, boundary and transition conditions of §2 are

subjected to the above scaling, and subsequently simplified by the shallow-ice ap-
proximation (SIA). That is, in the limit

ε→ 0, (4.3)

all terms of order O(εp) with p > 1 are neglected in comparison with unity (in real
ice sheets, ε is of the order 10−3). Furthermore, the Froude number in real ice sheets
takes values of order Fr = 10−15 or less. It is therefore meaningful to simultaneously
apply the limit

Fr

ε
→ 0. (4.4)

(i) Cold regions
The scaled mass balance from (2.1) becomes

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0, (4.5)

recalling that tildes are now omitted, which cannot be simplified further by the SIA.
The scaled momentum balance (2.3) is

Fr

ε

dvx
dt

= −∂p
∂x

+ ε2 ∂σ
R
x

∂x
+ ε2 ∂σxy

∂y
+
∂σxz
∂z

, (4.6)

Fr

ε

dvy
dt

= ε2 ∂σxy
∂x
− ∂p

∂y
+ ε2 ∂σ

R
y

∂y
+
∂σyz
∂z

, (4.7)

Frε
dvz
dt

= ε2 ∂σxz
∂x

+ ε2 ∂σyz
∂y
− ∂p

∂z
+ ε2 ∂σ

R
z

∂z
− 1. (4.8)

Application of the SIA yields

−∂p
∂x

+
∂σxz
∂z

= 0, (4.9)

−∂p
∂y

+
∂σyz
∂z

= 0, (4.10)

−∂p
∂z

= 1, (4.11)

which is an impressive example of how much the general equations of §2 are simplified
by the SIA. The result shows further that the scaling of the shear stresses σxz and σyz
with ερg[H] (see §4 a) is appropriate, because without the additional ε compared to
the pressure scaling, equations (4.9) and (4.10) would read ∂σxz/∂z = 0, ∂σyz/∂z =
0, a non-physical result for a free-surface flow governed by gravity and basal friction
(see Morland & Johnsen 1980; Hutter 1983; Morland 1984).
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The energy balance (2.8) becomes with an explicitly written advection term

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

{
ε2 ∂

∂x

(
κ
∂θ

∂x

)
+ ε2 ∂

∂y

(
κ
∂θ

∂y

)
+

∂

∂z

(
κ
∂θ

∂z

)}
+2

α

c
KEA(θ′)f(σ)σ2, (4.12)

and in the SIA limit,

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

∂

∂z

(
κ
∂θ

∂z

)
+ 2

α

c
KEA(θ′)f(σ)σ2. (4.13)

Horizontal heat conduction can therefore be neglected in the SIA limit, but horizon-
tal, as well as vertical, advection must be kept.

The stress–strain-rate relation (2.4) takes the component form

∂vx
∂x

= KEA(θ′)f(σ)σRx , (4.14)

∂vy
∂y

= KEA(θ′)f(σ)σRy , (4.15)

∂vz
∂z

= KEA(θ′)f(σ)σRz , (4.16)

∂vx
∂y

+
∂vy
∂x

= 2KEA(θ′)f(σ)σxy, (4.17)

∂vx
∂z

{
+ε2 ∂vz

∂x

}
= 2KEA(θ′)f(σ)σxz, (4.18)

∂vy
∂z

{
+ε2 ∂vz

∂y

}
= 2KEA(θ′)f(σ)σyz, (4.19)

and with the SIA the O(ε2) terms in curly brackets vanish. This makes clear that the
scaling of the normal frictional stresses σRx , σRy , σRz and of the shear stress σxy with
ε2ρg[H], according to §4 a, is appropriate, since it provides order-consistent terms in
all equations. These stresses are therefore very small in shallow grounded ice sheets.
Of the above relations only (4.18) and (4.19) will be needed to construct the leading
order stresses. Moreover, the effective shear stress (required for the energy balance
and for the creep response function),

σ =
√
σ2
xz + σ2

yz + ε2( 1
2(σRx )2 + 1

2(σRy )2 + 1
2(σRz )2 + σ2

xy), (4.20)

simplifies in the SIA limit to

σ =
√
σ2
xz + σ2

yz. (4.21)

(ii) Temperate regions
As already stated, the mixture mass balance and the mixture momentum balance

for ice plus water have the same form as the corresponding balances for cold ice (see
(2.1), (2.3), (2.13), (2.14)); therefore, the scaled and SIA versions are the same as in
the previous section (equations (4.5)–(4.11)), and will not be listed again.

For the temperature, according to (2.9),

θ = θM = −Bp. (4.22)
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For the mass balance of the component water (2.23) and the mixture energy balance
(2.24), which are the same provided that (2.25) is applied, we obtain

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
+
cαt

α

(
∂θM
∂t

+ vx
∂θM
∂x

+ vy
∂θM
∂y

+ vz
∂θM
∂z

)
= Dt

(
ε2 ∂

2ω

∂x2 + ε2 ∂
2ω

∂y2 +
∂2ω

∂z2

)
+
Dαt

α

{
ε2 ∂

∂x

(
κ
∂θM
∂x

)
+ ε2 ∂

∂y

(
κ
∂θM
∂y

)
+

∂

∂z

(
κ
∂θM
∂z

)}
+2αtKEAt(ω)ft(σ)σ2, (4.23)

which in the SIA reduces to

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
+
cαt

α

(
∂θM
∂t

+ vx
∂θM
∂x

+ vy
∂θM
∂y

+ vz
∂θM
∂z

)
= Dt

∂2ω

∂z2 +
Dαt

α

∂

∂z

(
κ
∂θM
∂z

)
+ 2αtKEAt(ω)ft(σ)σ2. (4.24)

As was the case for the energy balance of cold ice, horizontal diffusion is neglected.
The stress–strain-rate relation (2.17) is basically the same as for cold ice (2.4).

Hence equations (4.14)–(4.19) also hold for temperate ice, merely A(θ′) and f(σ)
must be replaced by At(ω) and ft(σ), respectively. Also the result for the effective
shear stress remains unchanged.

(iii) Lithosphere

The scaled energy balance (2.26)

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
Drκr

cr

(
ε2 ∂

2θ

∂x2 + ε2 ∂
2θ

∂y2 +
∂2θ

∂z2

)
(4.25)

reduces in the SIA limit to

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
Drκr

cr

∂2θ

∂z2 . (4.26)

The evolution of the lithosphere surface follows from (2.29) as

∂b

∂t
= − 1
Tr

[
b−

(
b0 − ρ

ρa
H

)]
; (4.27)

this cannot be further simplified. Correspondingly, the lithosphere velocity simplifies
to

vx = 0, vy = 0, vz =
∂b

∂t
(x, y, t) (4.28)

according to (2.30), with ∂b/∂t from equation (4.27).

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


944 R. Greve

(iv) Boundary conditions at the free surface
The scaled kinematic condition (2.33) is†

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz =

(
1 + ε2

(
∂h

∂x

)2

+ ε2
(
∂h

∂y

)2)1/2

a⊥s , (4.29)

which in the SIA becomes

∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz = a⊥s . (4.30)

For subsequent developments the terms

gradFs =
(
− ε∂h

∂x
, −ε∂h

∂y
, 1
)t
, (4.31)

‖ gradFs‖ =
(

1 + ε2

(
∂h

∂x

)2

+ ε2
(
∂h

∂y

)2
)1/2

(4.32)

are required, and in the SIA limit they reduce to

gradFs = (0, 0, 1)t, ‖ gradFs‖ = 1. (4.33)

With the outer normal unit vector n = gradFs/‖ gradFs‖, the component forms of
the momentum jump relation (2.34) are

−(−p+ ε2σRx )
∂h

∂x
− ε2σxy

∂h

∂y
+ σxz = 0, (4.34)

−ε2σxy
∂h

∂x
− (−p+ ε2σRy )

∂h

∂y
+ σyz = 0, (4.35)

−ε2σxz
∂h

∂x
− ε2σyz

∂h

∂y
− p+ ε2σRz = 0. (4.36)

Application of the SIA first simplifies the last of these equations to

p = 0, (4.37)

and with this, the first two equations yield

σxz = 0, σyz = 0. (4.38)

In the case of a cold free surface there remains the boundary condition for the surface
temperature (2.35), which is

θ(x, y, t) = θs(x, y, t). (4.39)

In the case of a temperate free surface, the water content ω or its normal derivative
must be prescribed.

† The minus-superscripts (·)− that mark the ice side in the boundary conditions at the free surface
as well as in the transition conditions at the ice base (see § 2) are omitted in the following. Therefore,
unmarked quantities always refer to the ice side.
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(v) Transition conditions at the cold ice base
The kinematic condition (2.38) remains formally unchanged under scaling and the

SIA,
∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = 0. (4.40)

Analogous to the free surface,

gradFb =
(
ε
∂b

∂x
, ε
∂b

∂y
, −1

)t
, (4.41)

‖ gradFb‖ =
(

1 + ε2
(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2)1/2

, (4.42)

and in the SIA limit,

gradFb = (0, 0,−1)t, ‖ gradFb‖ = 1. (4.43)

With n = gradFb/‖ gradFb‖,

Tn =
ρg[H]
‖ gradFb‖



εσx
∂b

∂x
+ ε3σxy

∂b

∂y
− εσxz

ε3σxy
∂b

∂x
+ εσy

∂b

∂y
− εσyz

ε2σxz
∂b

∂x
+ ε2σyz

∂b

∂y
− σz


, (4.44)

and

(n · Tn)n =
ρg[H]

‖ gradFb‖3

×



ε3σx

(
∂b

∂x

)3

+ ε3σy
∂b

∂x

(
∂b

∂y

)2

+ εσz
∂b

∂x

+2ε5σxy

(
∂b

∂x

)2
∂b

∂y
− 2ε3σxz

(
∂b

∂x

)2

− 2ε3σyz
∂b

∂x

∂b

∂y

ε3σx

(
∂b

∂x

)2
∂b

∂y
+ ε3σy

(
∂b

∂y

)3

+ εσz
∂b

∂y

+2ε5σxy
∂b

∂x

(
∂b

∂y

)2

− 2ε3σxz
∂b

∂x

∂b

∂y
− 2ε3σyz

(
∂b

∂y

)2

−ε2σx

(
∂b

∂x

)2

− ε2σy

(
∂b

∂y

)2

− σz

−2ε4σxy
∂b

∂x

∂b

∂y
+ 2ε2σxz

∂b

∂x
+ 2ε2σyz

∂b

∂y



, (4.45)
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the sliding law (2.39) becomes

(vsl)x = − FC
‖ gradFb‖

[
σx
∂b

∂x
+ ε2σxy

∂b

∂y
− σxz

− 1
‖ gradFb‖2

(
ε2σx

(
∂b

∂x

)3

+ ε2σy
∂b

∂x

(
∂b

∂y

)2

+ σz
∂b

∂x

+2ε4σxy

(
∂b

∂x

)2
∂b

∂y
− 2ε2σxz

(
∂b

∂x

)2

− 2ε2σyz
∂b

∂x

∂b

∂y

)]
, (4.46)

(vsl)y = − FC
‖ gradFb‖

[
ε2σxy

∂b

∂x
+ σy

∂b

∂y
− σyz

− 1
‖ gradFb‖2

(
ε2σx

(
∂b

∂x

)2
∂b

∂y
+ ε2σy

(
∂b

∂y

)3

+ σz
∂b

∂y

+2ε4σxy
∂b

∂x

(
∂b

∂y

)2

− 2ε2σxz
∂b

∂x

∂b

∂y
− 2ε2σyz

(
∂b

∂y

)2)]
, (4.47)

(vsl)z = − FC
‖ gradFb‖

[
σxz

∂b

∂x
+ σyz

∂b

∂y
− σz
ε2

− 1
‖ gradFb‖2

(
− σx

(
∂b

∂x

)2

− σy
(
∂b

∂y

)2

− σz
ε2

−2ε2σxy
∂b

∂x

∂b

∂y
+ 2σxz

∂b

∂x
+ 2σyz

∂b

∂y

)]
. (4.48)

In view of
1

‖ gradFb‖2 = 1− ε2
(
∂b

∂x

)2

− ε2
(
∂b

∂y

)2

+O(ε4)

(noting that equation (4.48) contains O(ε−2) terms, the two terms of order O(ε2)
are relevant), the SIA reductions are

(vsl)x = FCσxz, (4.49)
(vsl)y = FCσyz, (4.50)

(vsl)z = FC
(
∂b

∂x
σxz +

∂b

∂y
σyz

)
. (4.51)

According to its definition (see equation (2.38)), the sliding velocity vsl can be ex-
pressed as

(vsl)x = vx − v+
x −

ε2

‖ gradFb‖2

×
(

(vx − v+
x )
∂b

∂x
+ (vy − v+

y )
∂b

∂y
− (vz − v+

z )
)
∂b

∂x
, (4.52)

(vsl)y = vy − v+
y −

ε2

‖ gradFb‖2

×
(

(vx − v+
x )
∂b

∂x
+ (vy − v+

y )
∂b

∂y
− (vz − v+

z )
)
∂b

∂y
, (4.53)
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(vsl)z = vz − v+
z +

1
‖ gradFb‖2

×
(

(vx − v+
x )
∂b

∂x
+ (vy − v+

y )
∂b

∂y
− (vz − v+

z )
)
, (4.54)

and application of the SIA limit yields

(vsl)x = vx − v+
x , (4.55)

(vsl)y = vy − v+
y , (4.56)

(vsl)z = (vx − v+
x )
∂b

∂x
+ (vy − v+

y )
∂b

∂y
. (4.57)

Further, for the lithosphere model applied here, v+
x and v+

y vanish; see equations
(4.28).

The momentum jump relation (2.40) is not required, since the lithosphere stresses
are not calculated.

The energy jump relation (2.41) in scaled form is

κ

(
ε2 ∂θ

∂x

∂b

∂x
+ ε2 ∂θ

∂y

∂b

∂y
− ∂θ

∂z

)
− [κr]

[κ]
κr

(
ε2 ∂θ

+

∂x

∂b

∂x
+ ε2 ∂θ

+

∂y

∂b

∂y
− ∂θ+

∂z

)
= −αD

{
(vsl)x

∂b

∂x
(−p+ ε2σRx ) + ε2(vsl)x

∂b

∂y
σxy − (vsl)xσxz

+ε2(vsl)y
∂b

∂x
σxy + (vsl)y

∂b

∂y
(−p+ ε2σRy )− (vsl)yσyz

+ε2(vsl)z
∂b

∂x
σxz + ε2(vsl)z

∂b

∂y
σyz − (vsl)z(−p+ ε2σRz )

}
. (4.58)

If adhesion at the cold base is assumed, the term −(α/D){. . .} vanishes. The SIA
limit of (4.58) is

κ
∂θ

∂z
− [κr]

[κ]
κr
∂θ+

∂z
= −αD [(vsl)xσxz + (vsl)yσyz]; (4.59)

the terms containing the pressure p in (4.58) vanish due to equations (4.55)–(4.57).
Finally, there is the continuity of the temperature (equation (2.42)),

θ = θ+. (4.60)

(vi) Transition conditions at the temperate ice base
The relations (4.41)–(4.43) for gradFb and ‖ gradFb‖ are valid for this case as

well. Thus, the kinematic condition (2.50) is

∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz =

(
1 + ε2

(
∂b

∂x

)2

+ ε2
(
∂b

∂y

)2)1/2

[ω]ṁw
b , (4.61)

and in the SIA limit,
∂b

∂t
+ vx

∂b

∂x
+ vy

∂b

∂y
− vz = [ω]ṁw

b . (4.62)

The boundary condition for the water content (2.51),

Dt

‖ gradFb‖
(
− ε2 ∂ω

∂x

∂b

∂x
− ε2 ∂ω

∂y

∂b

∂y
+
∂ω

∂z

)
= (1− [ω]ω)ṁw

b − Pw
b , (4.63)
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reduces in the SIA limit to

Dt
∂ω

∂z
= (1− [ω]ω)ṁw

b − Pw
b . (4.64)

Scaling of the sliding law (2.52) is carried out analogous to the procedure for a
cold ice base, simply replacing FC by FtCt.

The energy jump relation (2.56) yields

Pw
b =

Dαt

α

κ

‖ gradFb‖
{
− ε2 ∂θ

∂x

∂b

∂x
− ε2 ∂θ

∂y

∂b

∂y
+
∂θ

∂z

}
−Dαt

α

[κr]
[κ]

κr

‖ gradFb‖
{
− ε2 ∂θ

+

∂x

∂b

∂x
− ε2 ∂θ

+

∂y

∂b

∂y
+
∂θ+

∂z

}
− αt

‖ gradFb‖
{

(vsl)x
∂b

∂x
(−p+ ε2σRx ) + ε2(vsl)x

∂b

∂y
σxy − (vsl)xσxz

+ε2(vsl)y
∂b

∂x
σxy + (vsl)y

∂b

∂y
(−p+ ε2σRy )− (vsl)yσyz + ε2(vsl)z

∂b

∂x
σxz

+ε2(vsl)z
∂b

∂y
σyz − (vsl)z(−p+ ε2σRz )

}
, (4.65)

and application of the SIA gives

Pw
b =

Dαt

α
κ
∂θ

∂z
− Dαt

α

[κr]
[κ]

κr
∂θ+

∂z
+ αt((vsl)xσxz + (vsl)yσyz); (4.66)

the pressure terms in (4.65) cancel due to (4.55)–(4.57).
Finally, there is continuity of the temperature (2.57),

θ = θ+ = θM . (4.67)

(vii) Boundary conditions at the lithosphere base
The expressions for gradFr and ‖ gradFr‖ have the same form as for the cold ice

base (see (4.41)–(4.43)); replacing b by br and Fb by Fr. Thus, with

n = gradFr/‖ gradFr‖,
from (2.58)

κr

(
ε2 ∂br
∂x

∂θ−

∂x
+ ε2 ∂br

∂y

∂θ−

∂y
− ∂θ−

∂z

)
= NrQ

⊥
geoth, (4.68)

and in the SIA limit,

κr
∂θ−

∂z
= −NrQ

⊥
geoth. (4.69)

(viii) Transition conditions at the CTS
As for the case of the free surface, the kinematic condition (2.60),

∂zm
∂t

+ vx
∂zm
∂x

+ vy
∂zm
∂y
− vz =

(
1 + ε2

(
∂zm
∂x

)2

+ ε2
(
∂zm
∂y

)2)1/2

a⊥m, (4.70)

reduces in the SIA limit to
∂zm
∂t

+ vx
∂zm
∂x

+ vy
∂zm
∂y
− vz = a⊥m. (4.71)
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gradFm, ‖ gradFm‖ and n = gradFm/‖ gradFm‖ are evaluated as before.
Continuity of temperature and velocity (equations (2.61)–(2.63)) require

θ+ = θ− = θM (4.72)

and
v+
x = v−x , v+

y = v−y , v+
z = v−z . (4.73)

The momentum jump relation (2.64) in scaled form is[[
−(−p+ ε2σRx )

∂zm
∂x
− ε2σxy

∂zm
∂y

+ σxz

]]
= 0, (4.74)[[

−ε2σxy
∂zm
∂x
− (−p+ ε2σRy )

∂zm
∂y

+ σyz

]]
= 0, (4.75)[[

−ε2σxz
∂zm
∂x
− ε2σyz

∂zm
∂y

+ (−p+ ε2σRz )
]]

= 0, (4.76)

and in the SIA limit,

p+ = p−, σ+
xz = σ−xz, σ+

yz = σ−yz. (4.77)

Finally, from the energy jump relation (2.70) and the thermal and water-content
jump relations (2.73)–(2.78), it is inferred that

(i)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) > 0 (melting condition):

ω− = 0, (4.78)

− ε2 ∂θ
+

∂x

∂zm
∂x
− ε2 ∂θ

+

∂y

∂zm
∂y

+
∂θ+

∂z
= −ε2 ∂θ

−
M

∂x

∂zm
∂x
− ε2 ∂θ

−
M

∂y

∂zm
∂y

+
∂θ−M
∂z

, (4.79)

and the latter reduces in the SIA limit to

∂θ+

∂z
=
∂θ−M
∂z

. (4.80)

(ii)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) < 0 (freezing condition):

In this case, (2.70) is needed in its full form, which, with the diffusion law (2.19),
becomes

Dκ
‖ gradFm‖

(
− ε2 ∂θ

+

∂x

∂zm
∂x
− ε2 ∂θ

+

∂y

∂zm
∂y

+
∂θ+

∂z

)
− Dκ
‖ gradFm‖

(
− ε2 ∂θ

−
M

∂x

∂zm
∂x
− ε2 ∂θ

−
M

∂y

∂zm
∂y

+
∂θ−M
∂z

)
− α
αt

Dt

‖ gradFm‖
(
− ε2 ∂ω

−

∂x

∂zm
∂x
− ε2 ∂ω

−

∂y

∂zm
∂y

+
∂ω−

∂z

)
=

α

αt
ω−a⊥m, (4.81)
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and in the SIA limit

Dκ∂θ
+

∂z
−Dκ∂θ

−
M

∂z
− α

αt
Dt
∂ω−

∂z
=

α

αt
ω−a⊥m. (4.82)

(iii)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) = 0 (parallel-flow condition):

ω− > 0 (undetermined). (4.83)
Moreover, continuity of the temperature gradient must hold analogous to case (i)
above (equations (4.79) and (4.80)).

(c ) Partial integration of the polythermal SIA equations
The above derived model equations, subjected to the shallow-ice approximation

(SIA), can be partly integrated analytically. It is now demonstrated that the dom-
inant stresses p, σxz and σyz can be obtained analytically, and the calculation of
the three components vx, vy and vz of the velocity field reduces to simple numerical
quadratures. The actual ‘hard’ numerics are therefore restricted to the computation
of the temperature and water-content fields, respectively, and the evolution of the
free surface, the ice base and the CTS of the polythermal ice sheet.

(i) Calculation of the stresses
Integrating equation (4.11) subject to the boundary condition (4.37) and the tran-

sition condition (4.77) gives the simple pressure distribution

p(x, y, z, t) = h(x, y, t)− z, (4.84)

which is a purely hydrostatic distribution. Using this result in equations (4.9), (4.10),
and integrating subject to the boundary and transition conditions (4.38) and (4.77),
yields

σxz = −∂h
∂x

(h− z), (4.85)

σyz = −∂h
∂y

(h− z). (4.86)

Thus, the shear stresses are a product of surface gradient and overburden (hydro-
static) pressure – a classical glaciological result. From (4.21), the effective shear stress
becomes

σ = (h− z)
√(

∂h

∂x

)2

+
(
∂h

∂y

)2

. (4.87)

Note that the above results are equally valid in the cold as well as in the temperate
regions of the ice sheet.

The remaining, very small stresses σRx , σRy , σRz and σxy, are not given by the
leading-order equations (but they could be calculated from the leading-order situa-
tion), nor are they required.

(ii) Calculation of the velocity
The horizontal velocities vx and vy are obtained by integrating the last two equa-

tions (4.18), (4.19) of the stress–strain-rate relation with σxz and σyz given by (4.85)
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and (4.86):

vx = vx,b − 2K∂h
∂x

∫ z

b
EA(t)(·)f(t)(σ)(h− z′) dz′, (4.88)

vy = vy,b − 2K∂h
∂y

∫ z

b
EA(t)(·)f(t)(σ)(h− z′) dz′, (4.89)

in which

A(t)(·) =

{
A(θ′) for z > zm (cold regions),
At(ω) for z < zm (temperate regions)

(4.90)

and

f(t)(σ) =

{
f(σ) for z > zm (cold regions),
ft(σ) for z < zm (temperate regions).

(4.91)

The integration constants vx,b and vy,b represent the corresponding basal velocities,
and are given by the sliding law (4.49), (4.50) with the above values for σxz and σyz:

vx,b = (vsl)x = −F(t)C(t)
∂h

∂x
(h− b), (4.92)

vy,b = (vsl)y = −F(t)C(t)
∂h

∂y
(h− b). (4.93)

Here use has been made of the fact that the x and y components of the lithosphere
velocity vanish (see (4.28)), so that, according to (4.55), (4.56), the components of
the sliding velocity and the corresponding components of the ice-base velocity are
identical. Furthermore,

F(t)C(t) =

{
FC for cold base,
FtCt for temperate base.

(4.94)

With these results for the horizontal velocities, further integration of the mass
balance (4.5) gives the vertical velocity,

vz = −
∫ z

b

(
∂vx
∂x

+
∂vy
∂y

)
dz′ + vz,b. (4.95)

In view of the kinematic conditions (4.40) and (4.62), the basal vertical velocity vz,b
can be expressed in terms of vx,b and vy,b.

To sum up, the velocities are given by the following relations:

vx = −F(t)C(t)
∂h

∂x
(h− b)− 2K∂h

∂x

∫ z

b
EA(t)(·)f(t)(σ)(h− z′) dz′, (4.96)

vy = −F(t)C(t)
∂h

∂y
(h− b)− 2K∂h

∂y

∫ z

b
EA(t)(·)f(t)(σ)(h− z′) dz′, (4.97)

vz = −
∫ z

b

(
∂vx
∂x

+
∂vy
∂y

)
dz′ +

∂b

∂t
+ vx,b

∂b

∂x
+ vy,b

∂b

∂y
− [ω]ṁw

b . (4.98)

If the temperature and water-content fields are known, all integrals can be easily
computed numerically. For the special case of an ice fluidity independent of tem-
perature and water content (A(t) = const.), the integrations can even be performed
analytically (see also Hutter 1983).
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Finally, note that

(vx, vy) ∝ −
(
∂h

∂x
,
∂h

∂y

)
= −grad(x,y) h; (4.99)

that is, the horizontal velocity throughout a vertical column of ice is in the direction
of steepest surface descent (cf. Hutter 1983). This result allows the concistency of
the SIA to be checked by comparing the velocity direction in ice-sheet boreholes.

(iii) Evolution of the free surface
An equation for the evolution of the free surface is derived by combining the mass

balance (4.5) with the kinematic conditions (4.30), (4.40), (4.62) for the free surface
and the ice base. Integration of the mass balance (4.5) from the ice base to the free
surface yields, with the Leibniz rule,

vz,s − vz,b = − ∂

∂x

∫ h

b
vx dz′ + vx,s

∂h

∂x
− vx,b ∂b

∂x
− ∂

∂y

∫ h

b
vy dz′ + vy,s

∂h

∂y
− vy,b ∂b

∂y
.

(4.100)
In view of the kinematic conditions (4.30), (4.40) and (4.62), this takes the form

∂H

∂t
=
∂(h− b)

∂t
= − ∂

∂x

∫ h

b
vx dz′ − ∂

∂y

∫ h

b
vy dz′ + a⊥s − [ω]ṁw

b , (4.101)

which balances the temporal change of ice thickness with the horizontal divergence
of the vertically integrated horizontal velocity, the accumulation-ablation function
(climatic boundary condition) and the water mass flux into the base.

(iv) Evolution of the CTS
In a similar way an evolution equation for the CTS can be obtained. Integrating

the mass balance (4.5) from the ice base to the CTS,

vz,m − vz,b = − ∂

∂x

∫ zm

b
vx dz′ + vx,m

∂zm
∂x
− vx,b ∂b

∂x

− ∂

∂y

∫ zm

b
vy dz′ + vy,m

∂zm
∂y
− vy,b ∂b

∂y
, (4.102)

and with the kinematic conditions (4.62) for the ice base and (4.71) for the CTS, it
follows that

∂(zm − b)
∂t

= − ∂

∂x

∫ zm

b
vx dz′ − ∂

∂y

∫ zm

b
vy dz′ + a⊥m − [ω]ṁw

b . (4.103)

The interpretation of this result is basically the same as for the surface evolution
equation, but here the ice volume flux through the CTS, a⊥m, is an unknown inner
variable, not a boundary source term.

(v) Evolution of the lithosphere surface
No further calculation is required here, as equation (4.27) is taken over unchanged,

∂b

∂t
= − 1
Tr

[
b−

(
b0 − ρ

ρa
H

)]
. (4.104)
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(vi) Temperature and water content
As already noted, the equations of §4 b for the temperature field and the water-

content field must be solved numerically. The water-content equation (4.24) can
be slightly simplified by substituting the result (4.84) obtained for the hydrostatic
pressure field. The temperature evolution equation for the cold region (4.13) reads

∂θ

∂t
+ vx

∂θ

∂x
+ vy

∂θ

∂y
+ vz

∂θ

∂z
=
D
c

∂

∂z

(
κ
∂θ

∂z

)
+ 2

α

c
KEA(θ′)f(σ)σ2. (4.105)

In the temperate regions, the temperature is uniquely determined by the pressure;
thus, from equations (4.22) and (4.84)

θ = θM = −B(h(x, y, t)− z), (4.106)

and consequently,

∂θM
∂t

+ vx
∂θM
∂x

+ vy
∂θM
∂y

+ vz
∂θM
∂z

= −B
(
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz

)
(4.107)

and
∂

∂z

(
κ
∂θM
∂z

)
= B∂κ

∂z
= B∂κ

∂θ

∂θ

∂z
= B2 ∂κ

∂θ
. (4.108)

For the water-content-evolution equation in the temperate regions (4.24) it follows
that

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
= Dt

∂2ω

∂z2 +
Dαt

α
B2 ∂κ

∂θ

+
cαt

α
B
(
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz

)
+ 2αtKEAt(ω)ft(σ)σ2, (4.109)

in which the effective shear stress σ is given by (4.87).
With (4.28) the temperature evolution equation for the lithosphere (4.26) is

∂θ

∂t
+
∂b

∂t

∂θ

∂z
=
Drκr

cr

∂2θ

∂z2 . (4.110)

At the cold free surface, the temperature is prescribed (equation (4.39), a Dirichlet-
type boundary condition),

θ = θs(x, y, t). (4.111)
The case of a temperate free surface, essentially irrelevant for ice sheets, will not be
considered. For a cold ice base, (4.59) and (4.60) hold,

κ
∂θ

∂z
− [κr]

[κ]
κr
∂θ+

∂z
= −αD [(vsl)xσxz + (vsl)yσyz], (4.112)

θ = θ+, (4.113)
and in case of a temperate ice base, (4.64), (4.66) and (4.67) apply,

Dt
∂ω

∂z
= (1− [ω]ω)ṁw

b − Pw
b , (4.114)

θ = θ+ = θM , (4.115)
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Pw
b =

Dαt

α
κ
∂θ

∂z
− Dαt

α

[κr]
[κ]

κr
∂θ+

∂z
+ αt((vsl)xσxz + (vsl)yσyz). (4.116)

Equation (4.114) is required only if the temperate ice base is overlain by a temperate
ice layer of non-vanishing thickness. In this case, (4.116) can further be simplified,
because then ∂θ/∂z = B holds due to (4.106). In the case of a temperate ice base
overlain by cold ice, however, this is not valid.

At the lithosphere base, (4.69) holds,

κr
∂θ−

∂z
= −NrQ

⊥
geoth. (4.117)

There remain the transition conditions at the CTS, (4.72), (4.78), (4.80) and (4.82):

θ+ = θ− = θM . (4.118)

(i)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) > 0 (melting condition):

ω− = 0, (4.119)
∂θ+

∂z
= B. (4.120)

(ii)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) < 0 (freezing condition):

Dκ
(
∂θ+

∂z
− B

)
− α

αt
Dt
∂ω−

∂z
=

α

αt
ω−a⊥m, (4.121)

where ∂θ−M/∂z = B was used.
(iii)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) = 0 (parallel-flow condition):

ω− > 0 (undetermined), (4.122)

∂θ+

∂z
= B. (4.123)

Finally, some limitations of the shallow-ice approximation are noted. First, this
limit excludes closed CTS lines with infinite gradient at a turning point, because
owing to the requirement ε� 1 it only allows a CTS of small inclination. Inclusions
of temperate ice in an environment of cold ice are therefore not accounted for, only
temperate regions that reach the ice base, but the latter represents by far the most
important case. Furthermore, the SIA entails singularities at ice margins and ice
domes (maxima of the ice elevation above sea level) (see Hutter 1983; Morland 1984;
Fowler 1992; Hutter 1993). Provided the basal sliding function C(t) is bounded, in the
vicinity of an ice margin the ice thickness takes the form of a square root function with
a vertical tangent at the margin, in contradiction to the shallowness assumption. At
ice domes, use of a pseudoplastic power law creep response function f(t)(σ) = σn−1

with n > 1 (a conventional assumption, see §5 a) yields an infinite curvature of
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the ice surface, a consequence of the viscosity tending to infinity for small stresses
and strain rates, respectively (Hutter et al. 1986). These results have been derived
for a purely cold-ice model, but they are applicable for polythermal ice sheets as
well. Moreover, in the vicinity of ice domes the SIA assumption that the vertical
velocity is of the order ε× horizontal velocity breaks down, because the velocity field
is primarily vertical in that neighbourhood; see equations (4.96), (4.97) and (4.98).
Thus, the SIA is not uniformly valid, and matching procedures would be needed to
connect inner and outer solutions. Such an extended asymptotic solution is, however,
not required since the region around a dome is passive to leading order. In addition,
it can be expected that a numerical solution of the model with discrete grid points
smears out these local singularities, so that the remaining error is negligible.

(d ) Compilation of the SIA equations in dimensional form
For better clarity and interpretation, the partly integrated polythermal SIA equa-

tions derived in §4 c are listed in dimensional form. They can be easily deduced from
the dimensionless equations by setting all the typical values [·] to unity (see §4 a).

Stresses:

p = ρg(h− z), (4.124)

σxz = −ρg(h− z)∂h
∂x
, (4.125)

σyz = −ρg(h− z)∂h
∂y
, (4.126)

σ = ρg(h− z)
√(

∂h

∂x

)2

+
(
∂h

∂y

)2

. (4.127)

Velocity:

vx = −ρg(h− b)C(t)
∂h

∂x
− 2ρg

∂h

∂x

∫ z

b
EA(t)(·)f(t)(σ)(h− z′) dz′, (4.128)

vy = −ρg(h− b)C(t)
∂h

∂y
− 2ρg

∂h

∂y

∫ z

b
EA(t)(·)f(t)(σ)(h− z′) dz′, (4.129)

vz = −
∫ z

b

(
∂vx
∂x

+
∂vy
∂y

)
dz′ +

∂b

∂t
+ vx,b

∂b

∂x
+ vy,b

∂b

∂y
− ṁw

b

ρ
. (4.130)

Evolution of the free surface:

∂H

∂t
=
∂(h− b)

∂t
= −∂Qx

∂x
− ∂Qy

∂y
+ a⊥s −

ṁw
b

ρ
, (4.131)

with the newly introduced mass flux Q defined as

(Qx, Qy) :=
∫ h

b
(vx, vy) dz′. (4.132)

Evolution of the CTS:

∂(zm − b)
∂t

= − ∂

∂x

∫ zm

b
vx dz′ − ∂

∂y

∫ zm

b
vy dz′ + a⊥m −

ṁw
b

ρ
. (4.133)
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Evolution of the ice base (lithosphere surface):

∂b

∂t
= − 1

τV
[b− (b0 − ρ

ρa
H)]. (4.134)

Temperature and water content:
Temperature equation, cold regions:

∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z
=

1
ρc

∂

∂z

(
κ
∂T

∂z

)
+

2
ρc
EA(T ′)f(σ)σ2; (4.135)

Temperature, temperate regions:

T = TM = T0 − β(h− z); (4.136)

Water content equation, temperate regions:

∂ω

∂t
+ vx

∂ω

∂x
+ vy

∂ω

∂y
+ vz

∂ω

∂z
=
ν

ρ

∂2ω

∂z2 +
β2

ρL

∂κ

∂T

+
cβ

L

(
∂h

∂t
+ vx

∂h

∂x
+ vy

∂h

∂y
− vz

)
+

2
ρL

EAt(ω)ft(σ)σ2 − 1
ρ
D(ω). (4.137)

Here an additional term −D(ω)/ρ has been introduced; D(ω) is the water drainage
function, corresponding to a negative volumetric water production; it represents a
simple ad hoc approach to describe the water drainage from the temperate-ice re-
gions into the base. This is necessary because, as analytic estimates and preliminary
numerical simulations without this term have shown, otherwise unrealistic and even
non-physical (ω > 100%) values for the water content may result. Of course, this ex-
traction process of water from the interior of the ice violates the local mass balance.
More realistic drainage mechanisms, based on the combined effects of gravitation and
interaction forces between ice and water, would require an even more complicated
model with two separate momentum balances for ice and water, which is not pursued
here (cf. Bauer 1997; Wu 1996).

Temperature equation, lithosphere:

∂T

∂t
+
∂b

∂t

∂T

∂z
=

κr

ρrcr

∂2T

∂z2 . (4.138)

Cold free surface:
T = Ts(x, y, t). (4.139)

Cold ice base:

κ
∂T

∂z
− κr

∂T+

∂z
= −(vsl)xσxz − (vsl)yσyz, (4.140)

T = T+. (4.141)

Temperate ice base (not overlain by a temperate ice layer):

T = T+ = TM , (4.142)

Pw
b =

1
L

{
κ
∂T

∂z
− κr

∂T+

∂z
+ ((vsl)xσxz + (vsl)yσyz)

}
. (4.143)

Temperate ice base (overlain by a temperate ice layer):

ν
∂ω

∂z
= (1− ω)ṁw

b − Pw
b , (4.144)
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T = T+ = TM , (4.145)

Pw
b =

1
L

{
κβ − κr

∂T+

∂z
+ ((vsl)xσxz + (vsl)yσyz)

}
. (4.146)

Recall that in case of a negligible water diffusivity ν, the water mass flux into the
base, ṁw

b , that must be prescribed in general, can be expressed through (2.48) by
the basal melting rate Pw

b . Since the water content of temperate ice is assumed to
be small (see also (5.7)), ṁw

b ≈ Pw
b holds.

Lithosphere base:

κr
∂T−

∂z
= −Q⊥geoth. (4.147)

Transition conditions, CTS:

T+ = T− = TM . (4.148)

(i)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) > 0 (melting condition):

ω− = 0, (4.149)
∂T+

∂z
= β. (4.150)

(ii)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) < 0 (freezing condition):

κ

(
∂T+

∂z
− β

)
− Lν ∂ω

−

∂z
= Lρω−a⊥m. (4.151)

(iii)

−(wx − vw,x)
∂zm
∂x
− (wy − vw,y)

∂zm
∂y

+ (wz − vw,z) = 0 (parallel-flow condition):

ω− > 0 (undetermined), (4.152)

∂T+

∂z
= β. (4.153)

In contrast to these general distinguishing criteria, the distinctions for negligible
water diffusion are simply determined by the sign of the ice volume flux through the
CTS, a⊥m (see §2 b (v)), thus a⊥m > 0 for the melting condition (case i), a⊥m < 0 for the
freezing condition (case (ii)) and a⊥m = 0 for the parallel-flow condition (case (iii)).

5. A simulation of the Greenland Ice Sheet

(a ) Specification of physical quantities
The polythermal SIA equations compiled in §4 d contain several physical quantities

that are still undefined. They are now specified.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


958 R. Greve

Creep response function, cold and temperate ice: Glen’s flow law (cf. Glen 1955;
Nye 1957; Hooke 1981; Paterson 1994)

f(σ) = ft(σ) = σn−1 with n = 3. (5.1)

Rate factor, cold ice: Arrhenius law for T ′ 6 −10 ◦C, Arrhenius-type fit for
−10 ◦C 6 T ′ < 0 ◦C (Paterson 1994):

A(T ′) =

{
A0 e−Q/R(T0+T ′) for T ′ 6 −10 ◦C,
A?0 e−Q

?/R(T0+T ′) for − 10 ◦C 6 T ′ < 0 ◦C,
(5.2)

with the activation energy Q = 60 kJ mol−1, the parameter Q? = 139 kJ mol−1, the
universal gas constant R, and A(T ′ = −10 ◦C) = 5.2×10−25 s−1 Pa−3 as a connecting
value for the two temperature regimes, which determines A0 and A?0.

Rate factor, temperate ice: Following Lliboutry & Duval (1985),

At(ω) = A(T ′ = 0 ◦C) (1 + 184ω). (5.3)

Sliding law, cold base: Adhesion condition

vsl = vb = 0; (5.4)

Sliding law, temperate base: Weertman-type sliding law

vsl = vb = −Csl

ρg

‖t‖‖p
(ρgH)q

t‖
‖t‖‖ with p = 3, q = 2, (5.5)

from which
vsl = vb = −CslH ‖ gradh‖2 gradh (5.6)

is obtained, with a sliding coefficient Csl = 6× 104 a−1 (Calov 1994).
Water drainage function: This is very problematic because of the lack of appropri-

ate measurements. It is expected that the temperate ice can keep a certain amount
of water, whereas additional water runs off downward through cracks, crevasses and
grain boundaries. The assumption here is that up to a threshold value ωmax, drainage
is negligible, and that any water surplus exceeding this threshold value is instanta-
neously drained, thus

D(ω) =

{
0 ω 6 ωmax

∞ ω > ωmax

}
(with ωmax = 1%). (5.7)

In view of sparseness of data on the water content of temperate glacier ice, this very
simple parametrization has the advantage that only one unknown parameter ωmax
appears. The choice of ωmax in (5.7) corresponds to the experimentally checked range
of validity of the rate factor for temperate ice (5.3) (cf. Lliboutry & Duval 1985).

Further quantities are compiled in table 1.

(b ) Evolution to the present-time steady state
As an example of the application of the polythermal SIA equations to a real prob-

lem, a steady-state simulation under present climate conditions for the Greenland Ice
Sheet is presented, based on the finite-difference program SICOPOLIS (SImulation
COde for POLythermal Ice Sheets) using a σ-transformation in the vertical (i.e. ver-
tical columns in the cold-ice domain, the temperate-ice domain and the lithosphere
are mapped onto [0,1] intervals) (Greve 1995). A horizontal resolution of 40 km is
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Figure 9. Measured surface topography h of the present Greenland Ice Sheet (Letréguilly et al.
1991a; in kilometres above sea level). The spacing between the isolines is 200 m. The dashed
heavy line indicates the ice margin.

applied, the vertical resolution is 51 grid points in the cold-ice domain, and 11 grid
points in the temperate-ice domain and in the lithosphere. The time steps for equa-
tions (4.131), (4.134) are 10 years, and for equations (4.135), (4.137) are 100 years.
Computation of the lithosphere temperature governed by equation (4.138) has been
switched off (instead, the geothermal heat flow has been imposed directly at the
ice base), because the thermal inertia of the lithosphere is only important during
the evolution and does not influence the final steady state. Since this is simply a
demonstration of the applicability of the model, the numerical solution technique of
SICOPOLIS is not discussed; for further information see Greve (1995).

The demonstration is a steady-state configuration under present climate condi-
tions, described by the present distribution of the mean annual air temperature
Tma (assumed equal to the 10 m firn temperature Ts) and the snowfall rate Ss as
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Table 1. Compilation of the physical parameters used in the model
(References: ρ, β: Calov (1994); τV , ρa: Abe-Ouchi (1993); κ, c, ρrcr, κr: Ritz (1987); L: Blatter
(1991).)

quantity value

density of ice, ρ 910 kg m−3

heat conductivity of ice, κ 9.828e−0.0057T [K] W m−1 K−1

specific heat of ice, c (146.3 + 7.253T [K]) J kg−1 K−1

latent heat of ice, L 335 kJ kg−1

Clausius–Clapeyron gradient, β 8.7× 10−4 K m−1

water diffusivity, ν 0
density × specific heat of the

lithosphere, ρrcr 2000 kJ m−3 K−1

heat conductivity of the lithosphere, κr 3 W m−1 K−1

thickness of the upper lithosphere layer
regarded by the model, Hr 5 km

time lag for bed adjustment, τV 3000 years
density of the asthenosphere, ρa 3300 kg m−3

gravity acceleration, g 9.81 m s−2

universal gas constant, R 8.314 J mol−1 K−1

known from measurements (Ohmura 1987; Ohmura & Reeh 1991), and a degree-day
parametrization for the surface melting rate Ms (Calov 1994). For the geothermal
heat flux, the standard value Q⊥geoth = 42 mW m−2 for precambrian shields is applied
(Lee 1970). The model time covers t = 0 . . . 100 000 years, being sufficient to reach
stationary conditions. As initial conditions for the topography the present values
btoday and htoday (data from Letréguilly et al. 1991a) are used, the initial temper-
ature is uniformly set to −10 ◦C, and for the initial age of the ice (see discussion
below) the value 15 000 years is applied.

The creep enhancement factor E (see equations (2.4), (2.17)) is to take into account
that glacial ice is less viscous than interglacial ice; however, the exact cause for
this distinction is still unclear (possibly differences in dust content and/or induced
anisotropies contribute to this phenomenon (cf. Paterson 1991, 1994; Svendsen &
Hutter 1996, 1997)). Here, the enhancement factor E is coupled to the age of the
ice A; the transition between Wisconsin ice age and Holocene interglacial is set at
11 000 years before present:

E = 1 if A < 11 000 years,
E = 3 if A > 11 000 years.

}
(5.8)

Possible influences of Eemian or even older ice are not considered here, because this
ice can only exist in very thin layers near the ice base where reliable calculation of the
age is not certain (due to the nesessity of introducing a certain amount of numerical
diffusion when solving the purely advective age equation dA/dt = 1).

The results of the simulation are depicted in figures 10–16. When comparing the
present surface topography from data (figure 9) with the modelled topography (fig-
ure 10), there is in general good agreement both for the surface topography itself
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Figure 10. Final state of simulation: topography of the ice surface (kilometres above sea level).
The spacing between the isolines is 200 m. The dashed heavy line indicates the ice margin.

and for the ice margin; the basic features are reproduced by the simulation. The
north dome is 124 m too high (3371 m instead of 3247 m), the south dome 51 m
too high (2960 m intead of 2909 m), and their positions are slightly shifted when
compared with those of the measurements. Furthermore, the simulated ice margin
tends to be more advanced toward the coast; in particular close to the north and
east coast small ice tongues into actually ice-free land are produced. Therefore, the
simulated ice-covered area Ai,b = 1.725 × 106 km2 is slightly bigger than the real
value 1.682× 106 km2.

Figures 11 and 12 show the mass flux Q and the ice surface velocity vs. The
mass flux follows the direction of steepest surface slope, a consequence of the shallow
ice approximation. Moreover, the flux away from the north dome takes place in
pronounced drainage areas, separated by regions with distinctly reduced ice flow.
Contrary to this, the drainage of the south dome appears to be more regular. This
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Figure 11. Final state of simulation: Horizontal mass flux. Double arrow length corresponds
to tenfold mass flux. The dashed heavy line indicates the ice margin, the isolines the surface
topography in 500 m intervals.

is caused by the distribution of the basal temperate ice regions (figure 13), on which
the ice is allowed to slide. They surround the south dome as an almost continuous
band, whereas north of the Arctic circle essentially four temperate patches exist that
form the drainage regions. This behaviour is an impressive demonstration of the
great significance of temperate ice for the dynamic behaviour of ice sheets.

It is further noticeable that of all basal grid points overlain by a temperate ice
layer of non-zero thickness, only one shows a CTS with freezing conditions (figure 13).
This is connected with the fact that, typically, the thickness of the basal temperate
ice layer gradually increases from the inner ice sheet region downstream (toward
the margin), and then decreases sharply in the immediate vicinity of the margin.
This can be clearly seen for West Greenland in figures 14 and 15, showing west-east
transects for the ice sheet at y = −2280 km and y = −1840 km, respectively. Due
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Figure 12. Final state of simulation: surface velocity (in km a−1). The isolines correspond to
the values 1, 3, 10, 30 . . . km a−1. The dashed heavy line indicates the ice margin.

to the steep decrease in thickness, freezing conditions at the CTS, expected close to
the margin, cannot be resolved in general. Incidentally, the simulation results of a
relatively thick temperate ice layer and high ice velocities in West Greenland in the
transect at y = −2280 km coincide with the presence of a very fast ice stream in this
area (‘Jacobshavns Isbræ’), for which Funk et al. (1994) similarly obtain a temperate
ice layer by applying a polythermal two-dimensional streamline model.

Finally, figure 16 depicts the applied forcing ∆Tma(t) ≡ 0, and the time evolutions
for the maximum ice elevation above sea level hmax (taken at the north dome), the
total ice volume Vtot, the maximum ice thickness Hmax, the temperate ice volume
Vtemp, the maximum thickness of the temperate ice layer Ht,max, the ice covered basal
area Ai,b as well as the basal area covered by temperate ice At,b. A striking feature
is the occurrence of strong peaks for the quantities connected with temperate ice
in the first 10 000 model years, Vtemp, Ht,max and At,b, coinciding with troughs of
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Figure 13. Final state of simulation: homologous temperature at the ice base (in ◦C). The spacing
between the isolines is 3 ◦C. Open diamond symbols indicate positions where the basal ice is at
the pressure melting point, yet with no temperate layer above, full diamonds (full circles, see
→ in the plot) indicate positions where there is a basal layer of temperate ice with a melting
(freezing) CTS. The dashed heavy line indicates the ice margin.

the topography quantities hmax, Vtot, Hmax. This behaviour is apparently an effect of
the arbitrarily chosen initial conditions (present topography, isothermal temperature
conditions) and thus does not have any counterpart in the actual history of the
Greenland Ice Sheet.

A variety of further simulations on steady-state as well as transient problems is
described by Greve (1995, 1997), Greve & Hutter (1995), Greve & MacAyeal (1996),
Greve et al. (1997), Hansen & Greve (1996) and Hansen et al. (1996).

The author thanks Professor Kolumban Hutter for his instructions when conducting this work,
and for carefully reading and correcting the manuscript; Professor Leslie Morland for his ex-
ceptionally thorough review, which led to a considerable improvement of this paper in terms

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Shallow polythermal ice sheets 965

Figure 14. Final state of simulation: transect at y = −2280 km. Top: ice velocity. Middle:
homologous ice temperature (in ◦C). Bottom: thickness of the basal layer of temperate ice
(open circles: cold ice base; open diamonds: temperate ice base with no temperate ice layer
above; full diamonds: basal layer of temperate ice with a melting CTS; full circle (see → in the
plot): basal layer of temperate ice with a freezing CTS).

of clarity and language quality; Dr Heinz Blatter for reviewing an earlier draft of the paper;
Mr Georg Bauer, Dr Stefan Diebels and Mr Magnus Weis for their time-consuming efforts to
keep the Institute’s workstations operating; Dr Reinhard Calov for his aid in developing the
numerical solution technique for the model equations; Dr Anne Letréguilly for provision of the
surface-topography and bedrock-topography data of Greenland. This work is part of the au-
thor’s Ph.D. thesis (Greve 1995). It was funded by a grant of the Studienstiftung des Deutschen
Volkes.

Appendix A. Notation

A age of the ice
Ai,b total ice-covered area
At,b basal area covered by temperate ice
A(T ′) rate factor of cold ice
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Figure 15. Final state of simulation: transect at y = −1840 km. Top: ice velocity. Middle:
homologous ice temperature (in ◦C). Bottom: thickness of the basal layer of temperate ice
(open circles: cold ice base; full diamonds: basal layer of temperate ice with a melting CTS).

At(ω) rate factor of temperate ice
A(t)(·) rate factor of cold or temperate ice
a⊥m volume flux through the CTS
a⊥s accumulation-ablation function at the ice surface
b z-coordinate of the ice base (lithosphere surface)
b0 relaxed value for b without ice load
br z-coordinate of the lithosphere base
bss steady-state position of the lithosphere surface b
C sliding function for a cold ice base
Ct sliding function for a temperate ice base
Csl coefficient in the Weertman-type sliding law for a temperate ice base
c specific heat of ice
cr specific heat of the lithosphere
D strain-rate tensor
D(ω) water drainage function
E enhancement factor in the flow law
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Figure 16. Simulation: time evolution of ∆Tma, hmax, Vtot, Hmax, Vtemp, Ht,max, Ai,b and At,b.
The meaning of these quantities is explained in the main text.

f(σ), ft(σ) creep response function of cold and temperate ice
g gravity acceleration
h z-coordinate of the free ice surface
hmax maximum h of the entire ice sheet
H ice thickness
Hmax maximum ice thickness H
Ht,max maximum thickness of the temperate ice layer
Hr lithosphere thickness
j diffusive water mass flux
jtot total water mass flux (relative to the motion of the CTS)
L latent heat of ice
M water mass production rate in temperate ice
Ms ablation rate (melting rate at the ice surface)
ṁw

b water mass flux into the base
p pressure
q total heat flux, qs + ql
ql latent heat flux
qs sensible heat flux
Q, Qi horizontal mass flux, its ith component
Q⊥geoth geothermal heat flux
R universal gas constant

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


968 R. Greve

Ss accumulation rate (snowfall rate at the ice surface)
t time
T temperature
TM pressure melting temperature
T0 melting temperature at zero pressure
T ′ homologous temperature (T − TM )
Tma mean annual air temperature above the ice sheet
Ts ice surface temperature (10-m firn temperature)
T stress tensor
TR stress deviator (frictional stresses)
v, vi velocity (barycentric), its ith component
vb, (vb)i basal ice velocity (barycentric), its ith component
vsl, (vsl)i basal sliding velocity (difference between ice velocity

and lithosphere velocity), its ith component
vi, (vi)j ice velocity in the mixture ice plus water, its jth component
vw, (vw)j water velocity in the mixture ice plus water, its jth component
Vtot total ice volume
Vtemp volume of temperate ice
w, wi velocity of a singular surface, its ith component
x, y horizontal Cartesian coordinates
z vertical Cartesian coordinate (elevation above sea level)
zm z coordinate of the CTS
α ratio of potential energy to internal energy in cold ice
αt ratio of potential energy to internal energy in temperate ice
β Clausius–Clapeyron gradient
ε internal energy
ε aspect ratio
κ heat conductivity of ice
κr heat conductivity of the lithosphere
ν water diffusivity in temperate ice
ρ true density of ice and of the mixture ice plus water, respectively
ρi partial density of ice in the mixture ice plus water
ρw partial density of water in the mixture ice plus water
ρa true density of the asthenosphere
ρr true density of the lithosphere
σ effective shear stress
σij ijth component of the stress tensor
σRij ijth component of the stress deviator
τV time lag for isostatic bed adjustment
ω water content of temperate ice (mass fraction)
ωmax threshold value in the water drainage law
[A] typical rate factor
[c] typical specific heat of ice
[cr] typical specific heat of the lithosphere
[C] typical sliding function for a cold ice base
[Ct] typical sliding function for a temperate ice base
[f ] typical creep response function
[H] typical vertical dimension
[L] typical horizontal dimension
[Q⊥geoth] typical geothermal heat flux
[VH ] typical vertical velocity
[VL] typical horizontal velocity
[∆T ] typical temperature difference
[κ] typical heat conductivity of ice
[κr] typical heat conductivity of the lithosphere
[ω] typical water content
B Clausius–Clapeyron number
D heat diffusion number
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Dt water diffusion number
Dr heat diffusion number of the lithosphere
F sliding number for a cold ice base
Ft sliding number for a temperate ice base
Fr Froude number
K fluidity number
Nr geothermal heat number of the lithosphere
Pw

b basal melting rate
Pw
m water surface production rate at the CTS
Tr time-lag number for isostatic bed adjustment

Appendix B. Integration of the slab equations

The equations derived in §3 a, that result from applying the polythermal ice sheet
model of §2 to the simplified problem for a sheet of uniform thickness, can be solved
almost entirely analytically. Only for the CTS position z = zm does an implicit
algebraic equation remain, which can easily be solved by a Newtonian root finder.

In view of (3.5), (3.6) and (3.7), integration of (3.2) yields

p(z) = ρg cos γ (H − z), (B 1)
σxz(z) = ρg sin γ (H − z), (B 2)

and thus
σ = σxz = ρg sin γ (H − z). (B 3)

Obviously, the pressure is purely hydrostatic.
With this result, equations (3.1), (3.5), (3.6), (3.7) and a prescribed basal velocity

vx,b, the velocity distribution is

vx(z) = 1
2A(ρg sin γ)3[H4 − (H − z)4] + vx,b, (B 4)

vz(z) = const. = −a⊥s = −a⊥m. (B 5)
The velocity parallel to the bed, vx, increases monotonically from its minimum value
vx,b at the base to its maximum value at the free surface, as is expected for this
gravity-driven shear flow. The velocity perpendicular to the bed, vz, is constant; it
balances the accumulation-ablation function a⊥s at the free surface, and represents
the negative ice volume flux a⊥m through the CTS.

The construction of the solution of equations (3.3) and (3.4) for the temperature
and the water content in the cold and the temperate region, respectively, and the
associated determination of the CTS position, is a rather lenthy procedure. First,
inserting equations (B 3) for σ and (B 5) for vz,

κ
d2T

dz2 + ρca⊥s
dT
dz

= −2A(ρg sin γ)4(H − z)4 (B 6)

and

ρa⊥s
dω
dz

= −2
A

L
(ρg sin γ)4(H − z)4. (B 7)

For easier calculation, map the vertical coordinate z onto the interval [0, 1] by the
transformation z = Hζ, then

D
d2T

dζ2 +M
dT
dζ

= −K(1− ζ)4 (B 8)
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and

M
dω
dζ

= −Kt(1− ζ)4, (B 9)

where

D =
κ

ρc
, M = Ha⊥s , K =

2A
ρc
H6(ρg sin γ)4, Kt =

2A
ρL

H6(ρg sin γ)4. (B 10)

Solution of the homogeneous equation of (B 8) is simply

Th = c1e−(M/D)ζ + c2. (B 11)

A particular integral of the inhomogeneous equation has the form

Tp = a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5, (B 12)

where the coefficients a1 to a5 are calculated by balancing powers of ζ in (B 8),
yielding

a5 = − K

5M
,

a4 =
K

M
+
DK

M2 ,

a3 = −2
K

M
− 4

DK

M2 − 4
D2K

M3 ,

a2 = 2
K

M
+ 6

DK

M2 + 12
D2K

M3 + 12
D3K

M4 ,

a1 = −K
M
− 4

DK

M2 − 12
D2K

M3 − 24
D3K

M4 − 24
D4K

M5 .



(B 13)

With the above results, the general solution of the temperature equation (B 8) is

T = c1e−(M/D)ζ + c2 + a1ζ + a2ζ
2 + a3ζ

3 + a4ζ
4 + a5ζ

5. (B 14)

The constants c1 and c2 are still free and must be determined by boundary and
transition conditions.

First consider the water content equation (B 9), which can be integrated directly:

ω =
Kt

5M
(1− ζ)5 + c3, (B 15)

leaving a further constant undetermined. The last step consists of calculating the
integration constants c1, c2 and c3, and the CTS position ζm. This must be performed
separately for the cases of melting conditions (a⊥m > 0) and freezing conditions
(a⊥m < 0) at the CTS.

Slab with melting condition at the CTS
In this case, according to (B 5), the velocity perpendicular to the bed is negative,

i.e. the ice flows from the free surface toward the base. Because of (3.6), (3.7) and
the subsequent discussion,

T (1) = Ts, T+(ζm) = 0, (dT+/dζ)ζm = 0, ω−(ζm) = 0. (B 16)
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Insertion of the first three of these equations into the general temperature solution
(B 14) yields

Ts = c1e−(M/D) + c2 + a1 + a2 + a3 + a4 + a5, (B 17)

0 = c1e−(M/D)ζm + c2 + a1ζm + a2ζ
2
m + a3ζ

3
m + a4ζ

4
m + a5ζ

5
m, (B 18)

0 = −M
D
c1e−(M/D)ζm + a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m, (B 19)

which are three equations for the three unknowns c1, c2 and ζm. With c2 from
(B 18) and c1 from (B 19), (B 17) becomes an implicit algebraic equation for the CTS
position ζm,

0 =
D

M
(1− e(M/D)(ζm−1))(a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m) + Ts

+a1(ζm − 1) + a2(ζ2
m − 1) + a3(ζ3

m − 1) + a4(ζ4
m − 1) + a5(ζ5

m − 1)
=: f(ζm). (B 20)

This can be easily solved with a Newtonian root finder (starting with an estimated
ζ

(0)
m , then iterating by ζ

(n+1)
m = ζ

(n)
m − f(ζ(n)

m )/f ′(ζ(n)
m )), which yields ζm with great

accuracy. This is the only step in the whole solution procedure that must be per-
formed numerically. Now c1 follows from equation (B 19), and then c2 from equation
(B 17). The temperature in the cold region, given by (B 14), is therefore determined
completely.

The forth boundary condition of (B 16) determines the coefficient c3 in the expres-
sion (B 15) for the water content, which becomes

ω =
Kt

5M
[(1− ζ)5 − (1− ζm)5]. (B 21)

Slab with freezing condition at the CTS
In this case, the velocity perpendicular to the bed is positive due to (B 5). The

streamlines of the ice flow therefore run away from the base into the direction of the
free surface. The boundary conditions, by equations (3.6), (3.7) and the subsequent
discussion, are

T (1) = Ts, T+(ζm) = 0,
κ

H

dT+

dζ
= Lω−ρa⊥m, ω(0) = 0. (B 22)

It is convenient here to first determine c3 by the last condition, when (B 15) becomes

ω =
Kt

5M
[(1− ζ)5 − 1]. (B 23)

Thus the water content at the temperate side of the CTS is

ω− = ω(ζm) =
Kt

5M
[(1− ζm)5 − 1], (B 24)

where, however, ζm is still undetermined. Now, the temperature-gradient condition
becomes

dT+

dζ
=
H

κ
Lρa⊥m

Kt

5M
[(1− ζm)5 − 1]

=
LρKt

5κ
[(1− ζm)5 − 1], since M = Ha⊥s = Ha⊥m. (B 25)
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The three temperature conditions (B 22)1,2 and (B 25) now relate c1, c2 and ζm:

Ts = c1e−(M/D) + c2 + a1 + a2 + a3 + a4 + a5, (B 26)

0 = c1e−(M/D)ζm + c2 + a1ζm + a2ζ
2
m + a3ζ

3
m + a4ζ

4
m + a5ζ

5
m,

(B 27)
LρKt

5κ
[(1− ζm)5 − 1] = −M

D
c1e−(M/D)ζm + a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m.

(B 28)

Again, with c2 from (B 27) and c1 from (B 28), (B 26) becomes an implicit algebraic
equation for ζm,

0 =
D

M
(1− e(M/D)(ζm−1))

(
a1 + 2a2ζm + 3a3ζ

2
m + 4a4ζ

3
m + 5a5ζ

4
m

−LρKt

5κ
[(1− ζm)5 − 1]

)
+ Ts

+a1(ζm − 1) + a2(ζ2
m − 1) + a3(ζ3

m − 1) + a4(ζ4
m − 1) + a5(ζ5

m − 1)

=: g(ζm). (B 29)

After solution by a Newtonian root finder, c1 follows from (B 28), c2 from (B 26),
and the temperature distribution (B 14) is fully determined.
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